1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
# -*- coding: utf-8 -*-
"""Tests for gam.AdditiveModel and GAM with Polynomials compared to OLS and GLM
Created on Sat Nov 05 14:16:07 2011
Author: Josef Perktold
License: BSD
Notes
-----
TODO: TestGAMGamma: has test failure (GLM looks good),
adding log-link didn't help
resolved: gamma doesn't fail anymore after tightening the
convergence criterium (rtol=1e-6)
TODO: TestGAMNegativeBinomial: rvs generation doesn't work,
nbinom needs 2 parameters
TODO: TestGAMGaussianLogLink: test failure,
but maybe precision issue, not completely off
but something is wrong, either the testcase or with the link
>>> tt3.__class__
<class '__main__.TestGAMGaussianLogLink'>
>>> tt3.res2.mu_pred.mean()
3.5616368292650766
>>> tt3.res1.mu_pred.mean()
3.6144278964707679
>>> tt3.mu_true.mean()
34.821904835958122
>>>
>>> tt3.y_true.mean()
2.685225067611543
>>> tt3.res1.y_pred.mean()
0.52991541684645616
>>> tt3.res2.y_pred.mean()
0.44626406889363229
one possible change
~~~~~~~~~~~~~~~~~~~
add average, integral based tests, instead of or additional to sup
* for example mean squared error for mu and eta (predict, fittedvalues)
or mean absolute error, what's the scale for this? required precision?
* this will also work for real non-parametric tests
example: Gamma looks good in average bias and average RMSE (RMISE)
>>> tt3 = _estGAMGamma()
>>> np.mean((tt3.res2.mu_pred - tt3.mu_true))/tt3.mu_true.mean()
-0.0051829977497423706
>>> np.mean((tt3.res2.y_pred - tt3.y_true))/tt3.y_true.mean()
0.00015255264651864049
>>> np.mean((tt3.res1.y_pred - tt3.y_true))/tt3.y_true.mean()
0.00015255538823786711
>>> np.mean((tt3.res1.mu_pred - tt3.mu_true))/tt3.mu_true.mean()
-0.0051937668989744494
>>> np.sqrt(np.mean((tt3.res1.mu_pred - tt3.mu_true)**2))/tt3.mu_true.mean()
0.022946118520401692
>>> np.sqrt(np.mean((tt3.res2.mu_pred - tt3.mu_true)**2))/tt3.mu_true.mean()
0.022953913332599746
>>> maxabs = lambda x: np.max(np.abs(x))
>>> maxabs((tt3.res1.mu_pred - tt3.mu_true))/tt3.mu_true.mean()
0.079540546242707733
>>> maxabs((tt3.res2.mu_pred - tt3.mu_true))/tt3.mu_true.mean()
0.079578857986784574
>>> maxabs((tt3.res2.y_pred - tt3.y_true))/tt3.y_true.mean()
0.016282852522951426
>>> maxabs((tt3.res1.y_pred - tt3.y_true))/tt3.y_true.mean()
0.016288391235613865
"""
import numpy as np
from numpy.testing import assert_almost_equal
from scipy import stats
from statsmodels.sandbox.gam import AdditiveModel
from statsmodels.sandbox.gam import Model as GAM #?
from statsmodels.genmod.families import family, links
from statsmodels.genmod.generalized_linear_model import GLM
from statsmodels.regression.linear_model import OLS
import nose
class Dummy(object):
pass
class CheckAM(object):
def test_predict(self):
assert_almost_equal(self.res1.y_pred,
self.res2.y_pred, decimal=2)
assert_almost_equal(self.res1.y_predshort,
self.res2.y_pred[:10], decimal=2)
def _est_fitted(self):
#check definition of fitted in GLM: eta or mu
assert_almost_equal(self.res1.y_pred,
self.res2.fittedvalues, decimal=2)
assert_almost_equal(self.res1.y_predshort,
self.res2.fittedvalues[:10], decimal=2)
def test_params(self):
#note: only testing slope coefficients
#constant is far off in example 4 versus 2
assert_almost_equal(self.res1.params[1:],
self.res2.params[1:], decimal=2)
#constant
assert_almost_equal(self.res1.params[1],
self.res2.params[1], decimal=2)
def _est_df(self):
#not used yet, copied from PolySmoother tests
assert_equal(self.res_ps.df_model(), self.res2.df_model)
assert_equal(self.res_ps.df_fit(), self.res2.df_model) #alias
assert_equal(self.res_ps.df_resid(), self.res2.df_resid)
class CheckGAM(CheckAM):
def test_mu(self):
#problem with scale for precision
assert_almost_equal(self.res1.mu_pred,
self.res2.mu_pred, decimal=0)
# assert_almost_equal(self.res1.y_predshort,
# self.res2.y_pred[:10], decimal=2)
class BaseAM(object):
def __init__(self):
#DGP: simple polynomial
order = 3
nobs = 200
lb, ub = -3.5, 3
x1 = np.linspace(lb, ub, nobs)
x2 = np.sin(2*x1)
x = np.column_stack((x1/x1.max()*1, 1.*x2))
exog = (x[:,:,None]**np.arange(order+1)[None, None, :]).reshape(nobs, -1)
idx = range((order+1)*2)
del idx[order+1]
exog_reduced = exog[:,idx] #remove duplicate constant
y_true = exog.sum(1) #/ 4.
#z = y_true #alias check
#d = x
self.nobs = nobs
self.y_true, self.x, self.exog = y_true, x, exog_reduced
class TestAdditiveModel(BaseAM, CheckAM):
def __init__(self):
super(self.__class__, self).__init__() #initialize DGP
nobs = self.nobs
y_true, x, exog = self.y_true, self.x, self.exog
np.random.seed(8765993)
sigma_noise = 0.1
y = y_true + sigma_noise * np.random.randn(nobs)
m = AdditiveModel(x)
m.fit(y)
res_gam = m.results #TODO: currently attached to class
res_ols = OLS(y, exog).fit()
#Note: there still are some naming inconsistencies
self.res1 = res1 = Dummy() #for gam model
#res2 = Dummy() #for benchmark
self.res2 = res2 = res_ols #reuse existing ols results, will add additional
res1.y_pred = res_gam.predict(x)
res2.y_pred = res_ols.model.predict(res_ols.params, exog)
res1.y_predshort = res_gam.predict(x[:10])
slopes = [i for ss in m.smoothers for i in ss.params[1:]]
const = res_gam.alpha + sum([ss.params[1] for ss in m.smoothers])
#print const, slopes
res1.params = np.array([const] + slopes)
class BaseGAM(BaseAM, CheckGAM):
def init(self):
raise nose.SkipTest("Incompatible scipy interface")
nobs = self.nobs
y_true, x, exog = self.y_true, self.x, self.exog
if not hasattr(self, 'scale'):
scale = 1
else:
scale = self.scale
f = self.family
self.mu_true = mu_true = f.link.inverse(y_true)
np.random.seed(8765993)
#y_obs = np.asarray([stats.poisson.rvs(p) for p in mu], float)
y_obs = self.rvs(mu_true, scale=scale, size=nobs) #this should work
m = GAM(y_obs, x, family=f) #TODO: y_obs is twice __init__ and fit
m.fit(y_obs, maxiter=100)
res_gam = m.results
self.res_gam = res_gam #attached for debugging
self.mod_gam = m #attached for debugging
res_glm = GLM(y_obs, exog, family=f).fit()
#Note: there still are some naming inconsistencies
self.res1 = res1 = Dummy() #for gam model
#res2 = Dummy() #for benchmark
self.res2 = res2 = res_glm #reuse existing glm results, will add additional
#eta in GLM terminology
res2.y_pred = res_glm.model.predict(res_glm.params, exog, linear=True)
res1.y_pred = res_gam.predict(x)
res1.y_predshort = res_gam.predict(x[:10]) #, linear=True)
#mu
res2.mu_pred = res_glm.model.predict(res_glm.params, exog, linear=False)
res1.mu_pred = res_gam.mu
#parameters
slopes = [i for ss in m.smoothers for i in ss.params[1:]]
const = res_gam.alpha + sum([ss.params[1] for ss in m.smoothers])
res1.params = np.array([const] + slopes)
class TestGAMPoisson(BaseGAM):
def __init__(self):
super(self.__class__, self).__init__() #initialize DGP
self.family = family.Poisson()
self.rvs = stats.poisson.rvs
self.init()
class TestGAMBinomial(BaseGAM):
def __init__(self):
super(self.__class__, self).__init__() #initialize DGP
self.family = family.Binomial()
self.rvs = stats.bernoulli.rvs
self.init()
class _estGAMGaussianLogLink(BaseGAM):
#test failure, but maybe precision issue, not far off
#>>> np.mean(np.abs(tt.res2.mu_pred - tt.mu_true))
#0.80409736263199649
#>>> np.mean(np.abs(tt.res2.mu_pred - tt.mu_true))/tt.mu_true.mean()
#0.023258245077813208
#>>> np.mean((tt.res2.mu_pred - tt.mu_true)**2)/tt.mu_true.mean()
#0.022989403735692578
def __init__(self):
super(self.__class__, self).__init__() #initialize DGP
self.family = family.Gaussian(links.log)
self.rvs = stats.norm.rvs
self.scale = 5
self.init()
class TestGAMGamma(BaseGAM):
def __init__(self):
super(self.__class__, self).__init__() #initialize DGP
self.family = family.Gamma(links.log)
self.rvs = stats.gamma.rvs
self.init()
class _estGAMNegativeBinomial(BaseGAM):
#rvs generation doesn't work, nbinom needs 2 parameters
def __init__(self):
super(self.__class__, self).__init__() #initialize DGP
self.family = family.NegativeBinomial()
self.rvs = stats.nbinom.rvs
self.init()
if __name__ == '__main__':
t1 = TestAdditiveModel()
t1.test_predict()
t1.test_params()
for tt in [TestGAMPoisson, TestGAMBinomial, TestGAMGamma,
_estGAMGaussianLogLink]: #, TestGAMNegativeBinomial]:
tt = tt()
tt.test_predict()
tt.test_params()
tt.test_mu
|