File: bit.cpp

package info (click to toggle)
stdgpu-contrib 1.3.0%2Bgit20220507.32e0517-3
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 2,524 kB
  • sloc: cpp: 7,818; pascal: 1,893; xml: 214; sh: 181; makefile: 16
file content (340 lines) | stat: -rw-r--r-- 10,685 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/*
 *  Copyright 2019 Patrick Stotko
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

#include <gtest/gtest.h>

#include <limits>
#include <random>
#include <thread>
#include <unordered_set>

#include <stdgpu/bit.h>
#include <test_utils.h>

class stdgpu_bit : public ::testing::Test
{
protected:
    // Called before each test
    void
    SetUp() override
    {
    }

    // Called after each test
    void
    TearDown() override
    {
    }
};

// Explicit template instantiations
namespace stdgpu
{

template STDGPU_HOST_DEVICE bool
has_single_bit<unsigned int>(const unsigned int);

template STDGPU_HOST_DEVICE unsigned int
bit_ceil<unsigned int>(const unsigned int);

template STDGPU_HOST_DEVICE unsigned int
bit_floor<unsigned int>(const unsigned int);

template STDGPU_HOST_DEVICE unsigned int
bit_mod<unsigned int>(const unsigned int, const unsigned int);

// Instantiation of specialized templates emit no-effect warnings with Clang
/*
template
STDGPU_HOST_DEVICE unsigned int
bit_width<unsigned int>(const unsigned int number);

template
STDGPU_HOST_DEVICE unsigned long long int
bit_width<unsigned long long int>(const unsigned long long int);

template
STDGPU_HOST_DEVICE int
popcount<unsigned int>(const unsigned int number);

template
STDGPU_HOST_DEVICE int
popcount<unsigned long long int>(const unsigned long long int);
*/

template STDGPU_HOST_DEVICE std::int32_t
bit_cast<std::int32_t>(const float&);

} // namespace stdgpu

void
thread_has_single_bit_random(const stdgpu::index_t iterations, const std::unordered_set<std::size_t>& pow2_list)
{
    // Generate true random numbers
    std::size_t seed = test_utils::random_thread_seed();

    std::default_random_engine rng(static_cast<std::default_random_engine::result_type>(seed));
    std::uniform_int_distribution<std::size_t> dist(std::numeric_limits<std::size_t>::lowest(),
                                                    std::numeric_limits<std::size_t>::max());

    for (stdgpu::index_t i = 0; i < iterations; ++i)
    {
        std::size_t number = dist(rng);

        if (pow2_list.find(number) == pow2_list.end())
        {
            EXPECT_FALSE(stdgpu::has_single_bit(number));
        }
    }
}

TEST_F(stdgpu_bit, has_single_bit)
{
    std::unordered_set<std::size_t> pow2_list;
    for (std::size_t i = 0; i < std::numeric_limits<std::size_t>::digits; ++i)
    {
        std::size_t pow2_i = static_cast<std::size_t>(1) << i;

        ASSERT_TRUE(stdgpu::has_single_bit(pow2_i));

        pow2_list.insert(pow2_i);
    }

    const stdgpu::index_t iterations_per_thread = static_cast<stdgpu::index_t>(pow(2, 19));

    test_utils::for_each_concurrent_thread(&thread_has_single_bit_random, iterations_per_thread, pow2_list);
}

void
thread_bit_ceil_random(const stdgpu::index_t iterations)
{
    // Generate true random numbers
    std::size_t seed = test_utils::random_thread_seed();

    std::default_random_engine rng(static_cast<std::default_random_engine::result_type>(seed));
    std::uniform_int_distribution<std::size_t> dist(
            std::numeric_limits<std::size_t>::lowest(),
            static_cast<std::size_t>(1) << static_cast<std::size_t>(std::numeric_limits<std::size_t>::digits - 1));

    for (stdgpu::index_t i = 0; i < iterations; ++i)
    {
        std::size_t number = dist(rng);

        std::size_t result = stdgpu::bit_ceil(number);

        EXPECT_TRUE(stdgpu::has_single_bit(result));
        EXPECT_GE(result, number);
        EXPECT_LT(result / 2, number);
    }
}

TEST_F(stdgpu_bit, bit_ceil_random)
{
    const stdgpu::index_t iterations_per_thread = static_cast<stdgpu::index_t>(pow(2, 19));

    test_utils::for_each_concurrent_thread(&thread_bit_ceil_random, iterations_per_thread);
}

TEST_F(stdgpu_bit, bit_ceil_zero)
{
    EXPECT_EQ(stdgpu::bit_ceil(static_cast<std::size_t>(0)), static_cast<std::size_t>(1));
}

void
thread_bit_floor_random(const stdgpu::index_t iterations)
{
    // Generate true random numbers
    std::size_t seed = test_utils::random_thread_seed();

    std::default_random_engine rng(static_cast<std::default_random_engine::result_type>(seed));
    std::uniform_int_distribution<std::size_t> dist(std::numeric_limits<std::size_t>::lowest(),
                                                    std::numeric_limits<std::size_t>::max());

    for (stdgpu::index_t i = 0; i < iterations; ++i)
    {
        std::size_t number = dist(rng);

        std::size_t result = stdgpu::bit_floor(number);

        EXPECT_TRUE(stdgpu::has_single_bit(result));
        EXPECT_LE(result, number);
        EXPECT_GT(result, number / 2);
    }
}

TEST_F(stdgpu_bit, bit_floor_random)
{
    const stdgpu::index_t iterations_per_thread = static_cast<stdgpu::index_t>(pow(2, 19));

    test_utils::for_each_concurrent_thread(&thread_bit_floor_random, iterations_per_thread);
}

TEST_F(stdgpu_bit, bit_floor_zero)
{
    EXPECT_EQ(stdgpu::bit_floor(static_cast<std::size_t>(0)), static_cast<std::size_t>(0));
}

void
thread_bit_mod_random(const stdgpu::index_t iterations, const std::size_t divider)
{
    // Generate true random numbers
    std::size_t seed = test_utils::random_thread_seed();

    std::default_random_engine rng(static_cast<std::default_random_engine::result_type>(seed));
    std::uniform_int_distribution<std::size_t> dist(std::numeric_limits<std::size_t>::lowest(),
                                                    std::numeric_limits<std::size_t>::max());

    for (stdgpu::index_t i = 0; i < iterations; ++i)
    {
        std::size_t number = dist(rng);
        EXPECT_EQ(stdgpu::bit_mod(number, divider), number % divider);
    }
}

TEST_F(stdgpu_bit, bit_mod_random)
{
    const std::size_t divider = static_cast<std::size_t>(pow(2, 21));
    const stdgpu::index_t iterations_per_thread = static_cast<stdgpu::index_t>(pow(2, 19));

    test_utils::for_each_concurrent_thread(&thread_bit_mod_random, iterations_per_thread, divider);
}

TEST_F(stdgpu_bit, bit_mod_one_positive)
{
    const std::size_t number = 42;
    const std::size_t divider = 1;
    EXPECT_EQ(stdgpu::bit_mod(number, divider), static_cast<std::size_t>(0));
}

TEST_F(stdgpu_bit, bit_mod_one_zero)
{
    const std::size_t number = 0;
    const std::size_t divider = 1;
    EXPECT_EQ(stdgpu::bit_mod(number, divider), static_cast<std::size_t>(0));
}

void
thread_bit_width_random(const stdgpu::index_t iterations)
{
    // Generate true random numbers
    std::size_t seed = test_utils::random_thread_seed();

    std::default_random_engine rng(static_cast<std::default_random_engine::result_type>(seed));
    std::uniform_int_distribution<std::size_t> dist(static_cast<std::size_t>(1),
                                                    std::numeric_limits<std::size_t>::max());

    for (stdgpu::index_t i = 0; i < iterations; ++i)
    {
        std::size_t number = dist(rng);

        std::size_t result = stdgpu::bit_width(number);

        EXPECT_GT(result, static_cast<std::size_t>(0));
        EXPECT_LE(result, static_cast<std::size_t>(std::numeric_limits<std::size_t>::digits));

        if (result > 0)
        {
            std::size_t number_lower_bound = static_cast<std::size_t>(1) << (result - 1);
            EXPECT_GE(number, number_lower_bound);

            if (number < static_cast<std::size_t>(1)
                                 << static_cast<std::size_t>(std::numeric_limits<std::size_t>::digits - 1))
            {
                std::size_t number_upper_bound = static_cast<std::size_t>(1) << result;
                EXPECT_LT(number, number_upper_bound);
            }
        }
    }
}

TEST_F(stdgpu_bit, bit_width_random)
{
    const stdgpu::index_t iterations_per_thread = static_cast<stdgpu::index_t>(pow(2, 19));

    test_utils::for_each_concurrent_thread(&thread_bit_width_random, iterations_per_thread);
}

TEST_F(stdgpu_bit, bit_width_zero)
{
    EXPECT_EQ(stdgpu::bit_width(static_cast<std::size_t>(0)), static_cast<std::size_t>(0));
}

TEST_F(stdgpu_bit, popcount_zero)
{
    EXPECT_EQ(stdgpu::popcount(static_cast<std::size_t>(0)), 0);
}

TEST_F(stdgpu_bit, popcount_pow2)
{
    for (int i = 0; i < std::numeric_limits<std::size_t>::digits; ++i)
    {
        EXPECT_EQ(stdgpu::popcount(static_cast<std::size_t>(1) << static_cast<std::size_t>(i)), 1);
    }
}

TEST_F(stdgpu_bit, popcount_pow2m1)
{
    for (int i = 0; i < std::numeric_limits<std::size_t>::digits; ++i)
    {
        EXPECT_EQ(stdgpu::popcount((static_cast<std::size_t>(1) << static_cast<std::size_t>(i)) -
                                   static_cast<std::size_t>(1)),
                  i);
    }
}

template <typename FloatTo, typename IntegerFrom>
void
thread_bit_cast_random(const stdgpu::index_t iterations)
{
    // Generate true random numbers
    std::size_t seed = test_utils::random_thread_seed();

    std::default_random_engine rng(static_cast<std::default_random_engine::result_type>(seed));
    std::uniform_int_distribution<IntegerFrom> dist(std::numeric_limits<IntegerFrom>::lowest(),
                                                    std::numeric_limits<IntegerFrom>::max());

    for (stdgpu::index_t i = 0; i < iterations; ++i)
    {
        IntegerFrom number_int = dist(rng);
        FloatTo number_float = stdgpu::bit_cast<FloatTo>(number_int);

        IntegerFrom number_int_back = stdgpu::bit_cast<IntegerFrom>(number_float);
        FloatTo number_float_back = stdgpu::bit_cast<FloatTo>(number_int_back);

        EXPECT_EQ(number_int, number_int_back);
        if (std::isnan(number_float))
        {
            EXPECT_TRUE(std::isnan(number_float_back));
        }
        else
        {
            EXPECT_DOUBLE_EQ(number_float, number_float_back);
        }
    }
}

TEST_F(stdgpu_bit, bit_cast_random_float_int32)
{
    const stdgpu::index_t iterations_per_thread = static_cast<stdgpu::index_t>(pow(2, 19));

    test_utils::for_each_concurrent_thread(&thread_bit_cast_random<float, std::int32_t>, iterations_per_thread);
}

TEST_F(stdgpu_bit, bit_cast_random_double_int64)
{
    const stdgpu::index_t iterations_per_thread = static_cast<stdgpu::index_t>(pow(2, 19));

    test_utils::for_each_concurrent_thread(&thread_bit_cast_random<double, std::int64_t>, iterations_per_thread);
}