1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
/* Stretch
This application is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
*/
//Qt Includes
#include <QtConcurrent>
//System Includes
#include <math.h>
//CFITSIO Includes
#include <fitsio.h>
//SEP Includes
#include "sep/sep.h"
//Project Includes
#include "stretch.h"
namespace {
// Returns the median value of the vector.
// The vector is modified in an undefined way.
template <typename T>
T median(std::vector<T>& values)
{
const int middle = values.size() / 2;
std::nth_element(values.begin(), values.begin() + middle, values.end());
return values[middle];
}
// Returns the rough max of the buffer.
template <typename T>
T sampledMax(T *values, int size, int sampleBy)
{
T maxVal = 0;
for (int i = 0; i < size; i+= sampleBy)
if (maxVal < values[i])
maxVal = values[i];
return maxVal;
}
// Returns the median of the sample values.
// The values are not modified.
template <typename T>
T median(T *values, int size, int sampleBy)
{
const int downsampled_size = size / sampleBy;
std::vector<T> samples(downsampled_size);
for (int index = 0, i = 0; i < downsampled_size; ++i, index += sampleBy)
samples[i] = values[index];
return median(samples);
}
// This stretches one channel given the input parameters.
// Based on the spec in section 8.5.6
// https://pixinsight.com/doc/docs/XISF-1.0-spec/XISF-1.0-spec.html
// Uses multiple threads, blocks until done.
// The extension parameters are not used.
// Sampling is applied to the output (that is, with sampling=2, we compute every other output
// sample both in width and height, so the output would have about 4X fewer pixels.
template <typename T>
void stretchOneChannel(T *input_buffer, QImage *output_image,
const StretchParams& stretch_params,
int input_range, int image_height, int image_width, int sampling)
{
QVector<QFuture<void>> futures;
// We're outputting uint8, so the max output is 255.
constexpr int maxOutput = 255;
// Maximum possible input value (e.g. 1024*64 - 1 for a 16 bit unsigned int).
const float maxInput = input_range > 1 ? input_range - 1 : input_range;
const float midtones = stretch_params.grey_red.midtones;
const float highlights = stretch_params.grey_red.highlights;
const float shadows = stretch_params.grey_red.shadows;
// Precomputed expressions moved out of the loop.
// hightlights - shadows, protecting for divide-by-0, in a 0->1.0 scale.
const float hsRangeFactor = highlights == shadows ? 1.0f : 1.0f / (highlights - shadows);
// Shadow and highlight values translated to the ADU scale.
const T nativeShadows = shadows * maxInput;
const T nativeHighlights = highlights * maxInput;
// Constants based on above needed for the stretch calculations.
const float k1 = (midtones - 1) * hsRangeFactor * maxOutput / maxInput;
const float k2 = ((2 * midtones) - 1) * hsRangeFactor / maxInput;
// Increment the input index by the sampling, the output index increments by 1.
for (int j = 0, jout = 0; j < image_height; j+=sampling, jout++)
{
futures.append(QtConcurrent::run([ = ]()
{
T * inputLine = input_buffer + j * image_width;
auto * scanLine = output_image->scanLine(jout);
for (int i = 0, iout = 0; i < image_width; i+=sampling, iout++)
{
const T input = inputLine[i];
if (input < nativeShadows) scanLine[iout] = 0;
else if (input >= nativeHighlights) scanLine[iout] = maxOutput;
else
{
const T inputFloored = (input - nativeShadows);
scanLine[iout] = (inputFloored * k1) / (inputFloored * k2 - midtones);
}
}
}));
}
for(QFuture<void> future : futures)
future.waitForFinished();
}
// This is like the above 1-channel stretch, but extended for 3 channels.
// This could have been more modular, but the three channels are combined
// into a single qRgb value at the end, so it seems the simplest thing is to
// replicate the code. It is assume the colors are not interleaved--the red image
// is stored fully, then the green, then the blue.
// Sampling is applied to the output (that is, with sampling=2, we compute every other output
// sample both in width and height, so the output would have about 4X fewer pixels.
template <typename T>
void stretchThreeChannels(T *inputBuffer, QImage *outputImage,
const StretchParams& stretchParams,
int inputRange, int imageHeight, int imageWidth, int sampling)
{
QVector<QFuture<void>> futures;
// We're outputting uint8, so the max output is 255.
constexpr int maxOutput = 255;
// Maximum possible input value (e.g. 1024*64 - 1 for a 16 bit unsigned int).
const float maxInput = inputRange > 1 ? inputRange - 1 : inputRange;
const float midtonesR = stretchParams.grey_red.midtones;
const float highlightsR = stretchParams.grey_red.highlights;
const float shadowsR = stretchParams.grey_red.shadows;
const float midtonesG = stretchParams.green.midtones;
const float highlightsG = stretchParams.green.highlights;
const float shadowsG = stretchParams.green.shadows;
const float midtonesB = stretchParams.blue.midtones;
const float highlightsB = stretchParams.blue.highlights;
const float shadowsB = stretchParams.blue.shadows;
// Precomputed expressions moved out of the loop.
// hightlights - shadows, protecting for divide-by-0, in a 0->1.0 scale.
const float hsRangeFactorR = highlightsR == shadowsR ? 1.0f : 1.0f / (highlightsR - shadowsR);
const float hsRangeFactorG = highlightsG == shadowsG ? 1.0f : 1.0f / (highlightsG - shadowsG);
const float hsRangeFactorB = highlightsB == shadowsB ? 1.0f : 1.0f / (highlightsB - shadowsB);
// Shadow and highlight values translated to the ADU scale.
const T nativeShadowsR = shadowsR * maxInput;
const T nativeShadowsG = shadowsG * maxInput;
const T nativeShadowsB = shadowsB * maxInput;
const T nativeHighlightsR = highlightsR * maxInput;
const T nativeHighlightsG = highlightsG * maxInput;
const T nativeHighlightsB = highlightsB * maxInput;
// Constants based on above needed for the stretch calculations.
const float k1R = (midtonesR - 1) * hsRangeFactorR * maxOutput / maxInput;
const float k1G = (midtonesG - 1) * hsRangeFactorG * maxOutput / maxInput;
const float k1B = (midtonesB - 1) * hsRangeFactorB * maxOutput / maxInput;
const float k2R = ((2 * midtonesR) - 1) * hsRangeFactorR / maxInput;
const float k2G = ((2 * midtonesG) - 1) * hsRangeFactorG / maxInput;
const float k2B = ((2 * midtonesB) - 1) * hsRangeFactorB / maxInput;
const int size = imageWidth * imageHeight;
for (int j = 0, jout = 0; j < imageHeight; j+=sampling, jout++)
{
futures.append(QtConcurrent::run([ = ]()
{
// R, G, B input images are stored one after another.
T * inputLineR = inputBuffer + j * imageWidth;
T * inputLineG = inputLineR + size;
T * inputLineB = inputLineG + size;
auto * scanLine = reinterpret_cast<QRgb*>(outputImage->scanLine(jout));
for (int i = 0, iout = 0; i < imageWidth; i+=sampling, iout++)
{
const T inputR = inputLineR[i];
const T inputG = inputLineG[i];
const T inputB = inputLineB[i];
uint8_t red, green, blue;
if (inputR < nativeShadowsR) red = 0;
else if (inputR >= nativeHighlightsR) red = maxOutput;
else
{
const T inputFloored = (inputR - nativeShadowsR);
red = (inputFloored * k1R) / (inputFloored * k2R - midtonesR);
}
if (inputG < nativeShadowsG) green = 0;
else if (inputG >= nativeHighlightsG) green = maxOutput;
else
{
const T inputFloored = (inputG - nativeShadowsG);
green = (inputFloored * k1G) / (inputFloored * k2G - midtonesG);
}
if (inputB < nativeShadowsB) blue = 0;
else if (inputB >= nativeHighlightsB) blue = maxOutput;
else
{
const T inputFloored = (inputB - nativeShadowsB);
blue = (inputFloored * k1B) / (inputFloored * k2B - midtonesB);
}
scanLine[iout] = qRgb(red, green, blue);
}
}));
}
for(QFuture<void> future : futures)
future.waitForFinished();
}
template <typename T>
void stretchChannels(T *input_buffer, QImage *output_image,
const StretchParams& stretch_params,
int input_range, int image_height, int image_width, int num_channels, int sampling)
{
if (num_channels == 1)
stretchOneChannel(input_buffer, output_image, stretch_params, input_range,
image_height, image_width, sampling);
else if (num_channels == 3)
stretchThreeChannels(input_buffer, output_image, stretch_params, input_range,
image_height, image_width, sampling);
}
// See section 8.5.7 in above link https://pixinsight.com/doc/docs/XISF-1.0-spec/XISF-1.0-spec.html
template <typename T>
void computeParamsOneChannel(T *buffer, StretchParams1Channel *params,
int inputRange, int height, int width)
{
// Find the median sample.
constexpr int maxSamples = 500000;
const int sampleBy = width * height < maxSamples ? 1 : width * height / maxSamples;
T medianSample = median(buffer, width * height, sampleBy);
// Find the Median deviation: 1.4826 * median of abs(sample[i] - median).
const int numSamples = width * height / sampleBy;
std::vector<T> deviations(numSamples);
for (int index = 0, i = 0; i < numSamples; ++i, index += sampleBy)
{
if (medianSample > buffer[index])
deviations[i] = medianSample - buffer[index];
else
deviations[i] = buffer[index] - medianSample;
}
// Shift everything to 0 -> 1.0.
const float medDev = median(deviations);
const float normalizedMedian = medianSample / static_cast<float>(inputRange);
const float MADN = 1.4826 * medDev / static_cast<float>(inputRange);
const bool upperHalf = normalizedMedian > 0.5;
const float shadows = (upperHalf || MADN == 0) ? 0.0 :
fmin(1.0, fmax(0.0, (normalizedMedian + -2.8 * MADN)));
const float highlights = (!upperHalf || MADN == 0) ? 1.0 :
fmin(1.0, fmax(0.0, (normalizedMedian - -2.8 * MADN)));
float X, M;
constexpr float B = 0.25;
if (!upperHalf) {
X = normalizedMedian - shadows;
M = B;
} else {
X = B;
M = highlights - normalizedMedian;
}
float midtones;
if (X == 0) midtones = 0.0f;
else if (X == M) midtones = 0.5f;
else if (X == 1) midtones = 1.0f;
else midtones = ((M - 1) * X) / ((2 * M - 1) * X - M);
// Store the params.
params->shadows = shadows;
params->highlights = highlights;
params->midtones = midtones;
params->shadows_expansion = 0.0;
params->highlights_expansion = 1.0;
}
// Need to know the possible range of input values.
// Using the type of the sample and guessing.
// Perhaps we should examine the contents for the file
// (e.g. look at maximum value and extrapolate from that).
int getRange(int data_type)
{
switch (data_type)
{
case SEP_TBYTE:
return 256;
case TSHORT:
return 64*1024;
case TUSHORT:
return 64*1024;
case TLONG:
return 64*1024;
case TFLOAT:
return 64*1024;
case TLONGLONG:
return 64*1024;
case TDOUBLE:
return 64*1024;
default:
return 64*1024;
}
}
} // namespace
Stretch::Stretch(int width, int height, int channels, int data_type)
{
image_width = width;
image_height = height;
image_channels = channels;
dataType = data_type;
input_range = getRange(dataType);
}
void Stretch::run(uint8_t *input, QImage *outputImage, int sampling)
{
Q_ASSERT(outputImage->width() == (image_width + sampling - 1) / sampling);
Q_ASSERT(outputImage->height() == (image_height + sampling - 1) / sampling);
recalculateInputRange(input);
switch (dataType)
{
case SEP_TBYTE:
stretchChannels(reinterpret_cast<uint8_t*>(input), outputImage, params,
input_range, image_height, image_width, image_channels, sampling);
break;
case TSHORT:
stretchChannels(reinterpret_cast<short*>(input), outputImage, params,
input_range, image_height, image_width, image_channels, sampling);
break;
case TUSHORT:
stretchChannels(reinterpret_cast<unsigned short*>(input), outputImage, params,
input_range, image_height, image_width, image_channels, sampling);
break;
case TLONG:
stretchChannels(reinterpret_cast<long*>(input), outputImage, params,
input_range, image_height, image_width, image_channels, sampling);
break;
case TFLOAT:
stretchChannels(reinterpret_cast<float*>(input), outputImage, params,
input_range, image_height, image_width, image_channels, sampling);
break;
case TLONGLONG:
stretchChannels(reinterpret_cast<long long*>(input), outputImage, params,
input_range, image_height, image_width, image_channels, sampling);
break;
case TDOUBLE:
stretchChannels(reinterpret_cast<double*>(input), outputImage, params,
input_range, image_height, image_width, image_channels, sampling);
break;
default:
break;
}
}
// The input range for float/double is ambiguous, and we can't tell without the buffer,
// so we set it to 64K and possibly reduce it when we see the data.
void Stretch::recalculateInputRange(uint8_t *input)
{
if (input_range <= 1) return;
if (dataType != TFLOAT && dataType != TDOUBLE) return;
float mx = 0;
if (dataType == TFLOAT)
mx = sampledMax(reinterpret_cast<float*>(input), image_height * image_width, 1000);
else if (dataType == TDOUBLE)
mx = sampledMax(reinterpret_cast<double*>(input), image_height * image_width, 1000);
if (mx <= 1.01f) input_range = 1;
}
StretchParams Stretch::computeParams(uint8_t *input)
{
recalculateInputRange(input);
StretchParams result;
for (int channel = 0; channel < image_channels; ++channel)
{
int offset = channel * image_width * image_height;
StretchParams1Channel *params = channel == 0 ? &result.grey_red :
(channel == 1 ? &result.green : &result.blue);
switch (dataType)
{
case SEP_TBYTE:
{
auto buffer = reinterpret_cast<uint8_t*>(input);
computeParamsOneChannel(buffer + offset, params, input_range,
image_height, image_width);
break;
}
case TSHORT:
{
auto buffer = reinterpret_cast<short*>(input);
computeParamsOneChannel(buffer + offset, params, input_range,
image_height, image_width);
break;
}
case TUSHORT:
{
auto buffer = reinterpret_cast<unsigned short*>(input);
computeParamsOneChannel(buffer + offset, params, input_range,
image_height, image_width);
break;
}
case TLONG:
{
auto buffer = reinterpret_cast<long*>(input);
computeParamsOneChannel(buffer + offset, params, input_range,
image_height, image_width);
break;
}
case TFLOAT:
{
auto buffer = reinterpret_cast<float*>(input);
computeParamsOneChannel(buffer + offset, params, input_range,
image_height, image_width);
break;
}
case TLONGLONG:
{
auto buffer = reinterpret_cast<long long*>(input);
computeParamsOneChannel(buffer + offset, params, input_range,
image_height, image_width);
break;
}
case TDOUBLE:
{
auto buffer = reinterpret_cast<double*>(input);
computeParamsOneChannel(buffer + offset, params, input_range,
image_height, image_width);
break;
}
default:
break;
}
}
return result;
}
|