1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "index.h"
#include <memory>
#include <string>
#include <netinet/if_ether.h> // ethhdr
#include <netinet/in.h> // ntohs(), ntohl()
#include <netinet/tcp.h> // tcphdr
#include <netinet/udp.h> // udphdr
#include <netinet/ip.h> // iphdr
#include <netinet/ip6.h> // ip6_hdr
#include <leveldb/env.h>
#include <leveldb/slice.h>
#include <leveldb/status.h>
#include <leveldb/table_builder.h>
namespace leveldb {
// Augment leveldb::Slice just slightly, so we can use it inside ordered
// data structures like our in-memory trees.
bool operator<(const leveldb::Slice& a, const leveldb::Slice& b) {
return a.compare(b) < 0;
}
} // namespace leveldb
namespace st {
// kTypeEthernet is NOT a valid ETH_P_ type. We use it to signify that the next
// layer to decode is an ethernet header.
const uint16_t kTypeEthernet = 0;
const uint32_t kMPLSBottomOfStack = 1 << 8;
void Index::Process(const Packet& p, int64_t block_offset) {
packets_++;
int64_t packet_offset = block_offset + p.offset_in_block;
CHECK(packet_offset < (int64_t(1) << 32));
const char* start = p.data.data();
const char* limit = start + p.data.size();
uint16_t type = kTypeEthernet;
uint8_t protocol = 0;
// We use a goto loop within this switch statement to strip all pre-IP-header
// layers off of the given packet.
pre_ip_encapsulation:
switch (type) {
case kTypeEthernet: {
if (start + sizeof(struct ethhdr) > limit) {
return;
}
auto eth = reinterpret_cast<const struct ethhdr*>(start);
start += sizeof(struct ethhdr);
type = ntohs(eth->h_proto);
goto pre_ip_encapsulation;
}
case ETH_P_8021Q:
case ETH_P_8021AD:
case ETH_P_QINQ1:
case ETH_P_QINQ2:
case ETH_P_QINQ3: {
if (start + 4 > limit) {
return;
}
AddVLAN(ntohs(*reinterpret_cast<const uint16_t*>(start)) & 0x0FFF,
packet_offset);
type = ntohs(*reinterpret_cast<const uint16_t*>(start + 2));
start += 4;
goto pre_ip_encapsulation;
}
case ETH_P_MPLS_UC:
case ETH_P_MPLS_MC: {
uint32_t mpls_header = 0;
do {
// We check for 5 bytes, because we need to parse the first nibble after
// the MPLS header to figure out the next layer type.
if (start + 5 > limit) {
return;
}
mpls_header = ntohl(*reinterpret_cast<const uint32_t*>(start));
AddMPLS(mpls_header >> 12, packet_offset);
start += 4;
} while (!(mpls_header & kMPLSBottomOfStack));
// Use the first nibble after the last MPLS layer to determine the
// underlying packet type.
switch (start[0] >> 4) {
case 0: // RFC4385
type = kTypeEthernet;
start += 4; // Skip over PW ethernet control word.
break;
case 4:
type = ETH_P_IP;
break;
case 6:
type = ETH_P_IPV6;
break;
default:
return;
}
goto pre_ip_encapsulation;
}
// All of the above use the pre_ip_encapsulation loop.
// All of the below do not.
case ETH_P_IP: {
if (start + sizeof(struct iphdr) > limit) {
return;
}
auto ip4 = reinterpret_cast<const struct iphdr*>(start);
AddIPv4(ntohl(ip4->saddr), packet_offset);
AddIPv4(ntohl(ip4->daddr), packet_offset);
size_t len = ip4->ihl;
len *= 4;
if (len < 20) return;
protocol = ip4->protocol;
start += len;
break;
}
case ETH_P_IPV6: {
if (start + sizeof(struct ip6_hdr) > limit) {
return;
}
auto ip6 = reinterpret_cast<const struct ip6_hdr*>(start);
protocol = ip6->ip6_ctlun.ip6_un1.ip6_un1_nxt;
start += sizeof(struct ip6_hdr);
AddIPv6(leveldb::Slice(reinterpret_cast<const char*>(&ip6->ip6_src), 16),
packet_offset);
AddIPv6(leveldb::Slice(reinterpret_cast<const char*>(&ip6->ip6_dst), 16),
packet_offset);
// Here, we use another goto loop to strip off all IPv6 extensions.
ip6_extensions:
switch (protocol) {
case IPPROTO_FRAGMENT: {
if (start + sizeof(struct ip6_frag) > limit) {
return;
}
auto ip6frag = reinterpret_cast<const struct ip6_frag*>(start);
if (ntohs(ip6frag->ip6f_offlg) & 0xfff8) {
// If we're not the first fragment, break out of the loop so we
// can store the IPs we have but recognize in the protocol switch
// later on that we don't know what this packet is.
break;
}
// otherwise, fall through to treating this like any other
// extention.
}
#ifdef IPPROTO_MH
case IPPROTO_MH:
#endif
case IPPROTO_HOPOPTS:
case IPPROTO_ROUTING:
case IPPROTO_DSTOPTS: {
if (start + sizeof(struct ip6_ext) > limit) {
return;
}
auto ip6ext = reinterpret_cast<const struct ip6_ext*>(start);
protocol = ip6ext->ip6e_nxt;
start += (ip6ext->ip6e_len + 1) * 8;
goto ip6_extensions;
}
}
break;
}
default:
return;
}
AddProtocol(protocol, packet_offset);
switch (protocol) {
case IPPROTO_TCP: {
if (start + sizeof(struct tcphdr) > limit) {
return;
}
auto tcp = reinterpret_cast<const struct tcphdr*>(start);
AddPort(ntohs(tcp->source), packet_offset);
AddPort(ntohs(tcp->dest), packet_offset);
break;
}
case IPPROTO_UDP: {
if (start + sizeof(struct udphdr) > limit) {
return;
}
auto udp = reinterpret_cast<const struct udphdr*>(start);
AddPort(ntohs(udp->source), packet_offset);
AddPort(ntohs(udp->dest), packet_offset);
break;
}
default:
return;
}
}
namespace {
// ValueFromVector returns a leveldb slice to act as the value in an index,
// converting the passed-in vector into that slice.
//
// This function destructively modifies the passed-in vector, and the return
// value references that vector's memory space. This function cannot be called
// on the same vector more than once, and the returned slice cannot be used if
// the passed-in vector is modified after this function returns.
leveldb::Slice ValueFromVector(std::vector<uint32_t>& vec) {
CHECK(vec.size() > 0);
size_t size = 1;
uint32_t last = vec[0];
vec[0] = htonl(last);
for (size_t i = 1; i < vec.size(); i++) {
if (vec[i] != last) {
last = vec[i];
vec[size] = htonl(last); // convert to network order.
size++;
}
}
return leveldb::Slice(reinterpret_cast<const char*>(vec.data()), size * 4);
}
void WriteToIndex(char first, const char* start, int size,
std::vector<uint32_t>& val, leveldb::TableBuilder* ss) {
char buf[1 + // First byte is type of index (ip4, ip6, proto, etc)
16]; // Last 1-16 bytes are type-specific index values.
CHECK(size <= 16);
buf[0] = first;
memcpy(buf + 1, start, size);
ss->Add(leveldb::Slice(buf, size + 1), ValueFromVector(val));
}
// Should be incremented for backwards-incompatible changes.
const uint16_t kIndexVersionNumberMajor = 2;
// Should be incremented for backwards-compatible changes.
const uint16_t kIndexVersionNumberMinor = 0;
const char kIndexVersion = 0;
const char kIndexProtocol = 1;
const char kIndexPort = 2;
const char kIndexVLAN = 3;
const char kIndexIPv4 = 4;
const char kIndexMPLS = 5;
const char kIndexIPv6 = 6;
} // namespace
Error Index::Flush() {
leveldb::WritableFile* file = NULL;
std::string filename = HiddenFile(dirname_, micros_);
auto status = leveldb::Env::Default()->NewWritableFile(filename, &file);
if (!status.ok()) {
return ERROR("could not open '" + filename + "': " + status.ToString());
}
std::unique_ptr<leveldb::WritableFile> cleaner(file);
RETURN_IF_ERROR(WriteTo(file), "writing index " + filename);
std::string unhidden = UnhiddenFile(dirname_, micros_);
LOG(INFO) << "Wrote all index files for " << filename << ", moving to "
<< unhidden;
RETURN_IF_ERROR(Errno(rename(filename.c_str(), unhidden.c_str())), "rename");
VLOG(1) << "Stored " << packets_ << " with " << ip4_.size() << " IP4 "
<< ip6_.size() << " IP6 " << proto_.size() << " protos "
<< port_.size() << " ports " << vlan_.size() << " vlan "
<< mpls_.size() << " mpls";
return SUCCESS;
}
Error Index::WriteTo(leveldb::WritableFile* file) {
leveldb::Options options;
options.compression = leveldb::kNoCompression;
leveldb::TableBuilder index_ss(options, file);
// The first entry we write is the version number that defines
// the format for this file.
char versionKeyBuf[1] = {kIndexVersion};
char versionBuf[8];
*reinterpret_cast<uint32_t*>(versionBuf) = htonl(kIndexVersionNumberMajor);
*reinterpret_cast<uint32_t*>(versionBuf + 4) =
htonl(kIndexVersionNumberMinor);
index_ss.Add(leveldb::Slice(versionKeyBuf, 1), leveldb::Slice(versionBuf, 8));
#define WRITE_TO_INDEX(name, convert, indextype, size) \
do { \
for (auto iter : name##_) { \
auto name = convert(iter.first); \
WriteToIndex(indextype, reinterpret_cast<const char*>(&name), size, \
iter.second, &index_ss); \
} \
} while (0)
WRITE_TO_INDEX(proto, , kIndexProtocol, 1);
WRITE_TO_INDEX(port, htons, kIndexPort, 2);
WRITE_TO_INDEX(vlan, htons, kIndexVLAN, 2);
WRITE_TO_INDEX(ip4, htonl, kIndexIPv4, 4);
WRITE_TO_INDEX(mpls, htonl, kIndexMPLS, 4);
#undef WRITE_TO_INDEX
for (auto iter : ip6_) {
auto ip6 = iter.first.data();
WriteToIndex(kIndexIPv6, ip6, 16, iter.second, &index_ss);
}
auto finished = index_ss.Finish();
if (!finished.ok()) {
return ERROR("could not finish writing index table: " +
finished.ToString());
}
auto closed = file->Close();
if (!closed.ok()) {
return ERROR("could not close index table: " + closed.ToString());
}
return SUCCESS;
}
void Index::AddIPv6(leveldb::Slice ip, uint32_t pos) {
CHECK(ip.size() == 16);
auto finder = ip6_.find(ip);
if (finder == ip6_.end()) {
ip = ip_pieces_.Store(ip);
ip6_[ip].push_back(pos);
} else {
finder->second.push_back(pos);
}
}
#define ADD_TO_INDEX(name, pos) \
do { \
name##_[name].push_back(pos); \
} while (0)
void Index::AddProtocol(uint8_t proto, uint32_t pos) {
ADD_TO_INDEX(proto, pos);
}
void Index::AddPort(uint16_t port, uint32_t pos) { ADD_TO_INDEX(port, pos); }
void Index::AddVLAN(uint16_t vlan, uint32_t pos) { ADD_TO_INDEX(vlan, pos); }
void Index::AddMPLS(uint32_t mpls, uint32_t pos) { ADD_TO_INDEX(mpls, pos); }
void Index::AddIPv4(uint32_t ip4, uint32_t pos) { ADD_TO_INDEX(ip4, pos); }
#undef ADD_TO_INDEX
} // namespace st
|