1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
|
// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/***** stenotype *****
*
* stenotype is a mechanism for quickly dumping raw packets to disk. It aims to
* have a simple interface (no file rotation: that's left as an exercise for
* the reader) while being very powerful.
*
* stenotype uses a NIC->disk pipeline specifically designed to provide as fast
* an output to disk as possible while just using the kernel's built-in
* mechanisms.
*
* 1) NIC -> RAM
* stenotype uses MMAP'd AF_PACKET with 1MB blocks and a high timeout to offload
* writing packets and deciding their layout to the kernel. The kernel packs
* all the packets it can into 1MB, then lets the userspace process know there's
* a block available in the MMAP'd ring buffer. Nicely, it guarantees no
* overruns (packets crossing the 1MB boundary) and good alignment to memory
* pages.
*
* 2) RAM -> Disk
* Since the kernel already gave us a single 1MB block of packets that's nicely
* aligned, we can O_DIRECT write it straight to disk. This avoids any
* additional copying or kernel buffering. To keep sequential reads going
* strong, we do all disk IO asynchronously via io_submit (which works
* specifically for O_DIRECT files... joy!). Since the data is being written to
* disk asynchronously, we use the time it's writing to disk to do our own
* in-memory processing and indexing.
*
* There are N (flag-specified) async IO operations available... once we've used
* up all N, we block on a used one finishing, then reuse it.
* The whole pipeline consists of:
* - kernel gives userspace a 1MB block of packets
* - userspace iterates over packets in block, updates any indexes
* - userspace starts async IO operation to write block to disk
* - after N async IO operations are submitted, we synchronously wait for the
* least recent one to finish.
* - when an async IO operation finishes, we release the 1MB block back to the
* kernel to write more packets.
*/
#include <errno.h> // errno
#include <fcntl.h> // O_*
#include <grp.h> // getgrnam()
#include <linux/if_packet.h> // AF_PACKET, sockaddr_ll
#include <poll.h> // POLLIN
#include <pthread.h> // pthread_sigmask()
#include <pwd.h> // getpwnam()
#include <sched.h> // sched_setaffinity()
#include <seccomp.h> // scmp_filter_ctx, seccomp_*(), SCMP_*
#include <signal.h> // sigaction(), SIGINT, SIGTERM
#include <string.h> // strerror()
#include <sys/prctl.h> // prctl(), PR_SET_*
#include <sys/resource.h> // setpriority(), PRIO_PROCESS
#include <sys/socket.h> // socket()
#include <sys/stat.h> // umask()
#include <sys/syscall.h> // syscall(), SYS_gettid
#include <unistd.h> // setuid(), setgid(), getpagesize()
#include <string>
#include <sstream>
#include <thread>
// Due to some weird interactions with <argp.h>, <string>, and --std=c++0x, this
// header MUST be included AFTER <string>.
#include <argp.h> // argp_parse()
#include "aio.h"
#include "index.h"
#include "packets.h"
#include "util.h"
namespace {
std::string flag_iface = "eth0";
std::string flag_filter = "";
std::string flag_dir = "";
int64_t flag_count = -1;
int32_t flag_blocks = 2048;
int32_t flag_aiops = 128;
int64_t flag_filesize_mb = 4 << 10;
int32_t flag_threads = 1;
int64_t flag_fileage_sec = 60;
int64_t flag_blockage_sec = 10;
uint64_t flag_blocksize_kb = 1024;
uint16_t flag_fanout_type =
// Use rollover as the default if it's available.
#ifdef PACKET_FANOUT_FLAG_ROLLOVER
PACKET_FANOUT_LB | PACKET_FANOUT_FLAG_ROLLOVER;
#else
PACKET_FANOUT_LB;
#endif
uint16_t flag_fanout_id = 0;
std::string flag_uid;
std::string flag_gid;
bool flag_index = true;
std::string flag_seccomp = "kill";
int flag_index_nicelevel = 0;
int flag_preallocate_file_mb = 0;
bool flag_watchdogs = true;
bool flag_promisc = true;
std::string flag_testimony;
int ParseOptions(int key, char* arg, struct argp_state* state) {
switch (key) {
case 'v':
st::logging_verbose_level++;
break;
case 'q':
st::logging_verbose_level--;
break;
case 300:
flag_iface = arg;
break;
case 301:
flag_dir = arg;
break;
case 302:
flag_count = atoi(arg);
break;
case 303:
flag_blocks = atoi(arg);
break;
case 304:
flag_aiops = atoi(arg);
break;
case 305:
flag_filesize_mb = atoi(arg);
break;
case 306:
flag_threads = atoi(arg);
break;
case 307:
flag_fileage_sec = atoi(arg);
break;
case 308:
flag_fanout_type = atoi(arg);
break;
case 309:
flag_fanout_id = atoi(arg);
break;
case 310:
flag_uid = arg;
break;
case 311:
flag_gid = arg;
break;
case 312:
flag_index = false;
break;
case 313:
flag_index_nicelevel = atoi(arg);
break;
case 314:
flag_filter = arg;
break;
case 315:
flag_seccomp = arg;
break;
case 316:
flag_preallocate_file_mb = atoi(arg);
break;
case 317:
flag_watchdogs = false;
break;
case 318:
flag_testimony = arg;
break;
case 319:
flag_blockage_sec = atoi(arg);
break;
case 320:
flag_blocksize_kb = atoll(arg);
break;
case 321:
flag_promisc = false;
break;
}
return 0;
}
void ParseOptions(int argc, char** argv) {
const char* s = "STRING";
const char* n = "NUM";
struct argp_option options[] = {
{0, 'v', 0, 0, "Verbose logging, may be given multiple times"},
{0, 'q', 0, 0, "Quiet logging. Each -q counteracts one -v"},
{"iface", 300, s, 0, "Interface to read packets from"},
{"dir", 301, s, 0, "Directory to store packet files in"},
{"count", 302, n, 0,
"Total number of packets to read, -1 to read forever"},
{"blocks", 303, n, 0, "Total number of blocks to use, each is 1MB"},
{"aiops", 304, n, 0, "Max number of async IO operations"},
{"filesize_mb", 305, n, 0, "Max file size in MB before file is rotated"},
{"threads", 306, n, 0, "Number of parallel threads to read packets with"},
{"fileage_sec", 307, n, 0, "Files older than this many secs are rotated"},
{"fanout_type", 308, n, 0, "TPACKET_V3 fanout type to fanout packets"},
{"fanout_id", 309, n, 0, "If fanning out across processes, set this"},
{"uid", 310, n, 0, "Drop privileges to this user"},
{"gid", 311, n, 0, "Drop privileges to this group"},
{"no_index", 312, 0, 0, "Do not compute or write indexes"},
{"index_nicelevel", 313, n, 0, "Nice level of indexing threads"},
{"filter", 314, s, 0,
"BPF compiled filter used to filter which packets "
"will be captured. This has to be a compiled BPF in hexadecimal, which "
"can be obtained from a human readable filter expression using the "
"provided compile_bpf.sh script."},
{"seccomp", 315, s, 0, "Seccomp style, one of 'none', 'trace', 'kill'."},
{"preallocate_file_mb", 316, n, 0,
"When creating new files, preallocate to this many MB"},
{"no_watchdogs", 317, 0, 0, "Don't start any watchdogs"},
#ifdef TESTIMONY
{"testimony", 318, n, 0, "Testimony socket to use"},
#else
{"testimony", 318, n, 0, "TESTIMONY NOT COMPILED INTO THIS BINARY"},
#endif
{"blockage_sec", 319, n, 0, "A block is written at least every N secs"},
{"blocksize_kb", 320, n, 0, "Size of a block, in KB"},
{"no_promisc", 321, 0, 0, "Don't set promiscuous mode"},
{0},
};
struct argp argp = {options, &ParseOptions};
argp_parse(&argp, argc, argv, 0, 0, 0);
}
} // namespace
namespace st {
// These two synchronization mechanisms are used to coordinate when to
// chroot/chuid so it's after when the threads create their sockets but before
// they start writing files.
Notification main_complete;
void DropPrivileges() {
LOG(INFO) << "Dropping privileges";
if (getgid() == 0 || flag_gid != "") {
if (flag_gid == "") {
flag_gid = "nogroup";
}
LOG(INFO) << "Dropping privileges from " << getgid() << " to GID "
<< flag_gid;
auto group = getgrnam(flag_gid.c_str());
CHECK(group != NULL) << "Unable to get info for group " << flag_gid;
CHECK_SUCCESS(Errno(setgid(group->gr_gid)));
} else {
VLOG(1) << "Staying with GID=" << getgid();
}
if (getuid() == 0 || flag_uid != "") {
if (flag_uid == "") {
flag_uid = "nobody";
}
LOG(INFO) << "Dropping privileges from " << getuid() << " to UID "
<< flag_uid;
auto passwd = getpwnam(flag_uid.c_str());
CHECK(passwd != NULL) << "Unable to get info for user " << flag_uid;
flag_uid = passwd->pw_uid;
CHECK_SUCCESS(Errno(initgroups(flag_uid.c_str(), getgid())));
CHECK_SUCCESS(Errno(setuid(passwd->pw_uid)));
} else {
VLOG(1) << "Staying with UID=" << getuid();
}
}
#define SECCOMP_RULE_ADD(...) \
CHECK_SUCCESS(NegErrno(seccomp_rule_add(__VA_ARGS__)))
void CommonPrivileges(scmp_filter_ctx ctx) {
// Very common operations, including sleeping, logging, and getting time.
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(write), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(clock_nanosleep), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(clock_gettime), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(gettimeofday), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(read), 0);
// Mutex and other synchronization.
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(set_robust_list), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(futex), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(restart_syscall), 0);
// File operations.
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(fallocate), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(ftruncate), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(fstat), 0);
#ifdef __NR_fstat64
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(fstat64), 0);
#endif
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(close), 0);
// Signal handling and propagation to threads.
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(rt_sigaction), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(rt_sigprocmask), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(rt_sigreturn), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(tgkill), 0);
// Malloc/ringbuffer.
#ifdef __NR_mmap
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(mmap), 0);
#endif
#ifdef __NR_mmap2
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(mmap2), 0);
#endif
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(munmap), 0);
// Malloc.
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(mprotect), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(madvise), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(brk), 0);
// Exiting threads.
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(exit), 0);
#ifdef __NR_sigreturn
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(sigreturn), 0);
#endif
}
scmp_filter_ctx kSkipSeccomp = scmp_filter_ctx(-1);
scmp_filter_ctx SeccompCtx() {
if (flag_seccomp == "none") return kSkipSeccomp;
if (flag_seccomp == "trace") return seccomp_init(SCMP_ACT_TRACE(1));
if (flag_seccomp == "kill") return seccomp_init(SCMP_ACT_KILL);
LOG(FATAL) << "invalid --seccomp flag: " << flag_seccomp;
return NULL; // unreachable
}
void DropCommonThreadPrivileges() {
scmp_filter_ctx ctx = SeccompCtx();
if (ctx == kSkipSeccomp) return;
CHECK(ctx != NULL);
CommonPrivileges(ctx);
CHECK_SUCCESS(NegErrno(seccomp_load(ctx)));
seccomp_release(ctx);
}
void DropIndexThreadPrivileges() {
scmp_filter_ctx ctx = SeccompCtx();
if (ctx == kSkipSeccomp) return;
CHECK(ctx != NULL);
CommonPrivileges(ctx);
#ifdef __NR_getrlimit
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(getrlimit), 0);
#endif
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(rename), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(open), 1,
SCMP_A1(SCMP_CMP_EQ, O_WRONLY | O_CREAT | O_TRUNC));
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(open), 1,
SCMP_A1(SCMP_CMP_EQ, O_RDWR | O_CREAT | O_TRUNC));
CHECK_SUCCESS(NegErrno(seccomp_load(ctx)));
seccomp_release(ctx);
}
void DropPacketThreadPrivileges() {
scmp_filter_ctx ctx = SeccompCtx();
if (ctx == kSkipSeccomp) return;
CHECK(ctx != NULL);
CommonPrivileges(ctx);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(io_setup), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(io_submit), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(io_getevents), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(poll), 1,
SCMP_A1(SCMP_CMP_EQ, POLLIN));
SECCOMP_RULE_ADD(
ctx, SCMP_ACT_ALLOW, SCMP_SYS(open), 2,
SCMP_A1(SCMP_CMP_EQ, O_WRONLY | O_CREAT | O_DSYNC | O_DIRECT),
SCMP_A2(SCMP_CMP_EQ, 0600));
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(getsockopt), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(rename), 0);
#ifdef TESTIMONY
if (!flag_testimony.empty()) {
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(recvfrom), 0);
SECCOMP_RULE_ADD(ctx, SCMP_ACT_ALLOW, SCMP_SYS(sendto), 0);
}
#endif
CHECK_SUCCESS(NegErrno(seccomp_load(ctx)));
seccomp_release(ctx);
}
#undef SECCOMP_RULE_ADD
Error SetAffinity(int cpu) {
cpu_set_t cpus;
CPU_ZERO(&cpus);
CPU_SET(cpu, &cpus);
return Errno(sched_setaffinity(0, sizeof(cpus), &cpus));
}
void WriteIndexes(int thread, st::ProducerConsumerQueue* write_index) {
VLOG(1) << "Starting WriteIndexes thread " << thread;
Watchdog dog("WriteIndexes thread " + std::to_string(thread),
(flag_watchdogs ? flag_fileage_sec * 3 : -1));
pid_t tid = syscall(SYS_gettid);
LOG_IF_ERROR(Errno(setpriority(PRIO_PROCESS, tid, flag_index_nicelevel)),
"setpriority");
DropIndexThreadPrivileges();
while (true) {
VLOG(1) << "Waiting for index";
Index* i = reinterpret_cast<Index*>(write_index->Get());
VLOG(1) << "Got index " << int64_t(i);
if (i == NULL) {
break;
}
LOG_IF_ERROR(i->Flush(), "index flush");
VLOG(1) << "Wrote index " << int64_t(i);
delete i;
dog.Feed();
}
VLOG(1) << "Exiting write index thread";
}
bool run_threads = true;
void HandleSignals(int sig) {
if (run_threads) {
LOG(INFO) << "Got signal " << sig << ", stopping threads";
run_threads = false;
}
}
void HandleSignalsThread() {
VLOG(1) << "Handling signals";
struct sigaction handler;
handler.sa_handler = &HandleSignals;
sigemptyset(&handler.sa_mask);
handler.sa_flags = 0;
sigaction(SIGINT, &handler, NULL);
sigaction(SIGTERM, &handler, NULL);
DropCommonThreadPrivileges();
main_complete.WaitForNotification();
VLOG(1) << "Signal handling done";
}
void RunThread(int thread, st::ProducerConsumerQueue* write_index,
Packets* v3) {
if (flag_threads > 1) {
LOG_IF_ERROR(SetAffinity(thread), "set affinity");
}
Watchdog dog("Thread " + std::to_string(thread),
(flag_watchdogs ? flag_fileage_sec * 2 : -1));
std::unique_ptr<Packets> cleanup(v3);
DropPacketThreadPrivileges();
LOG(INFO) << "Thread " << thread << " starting to process packets";
// Set up file writing, if requested.
Output output(flag_aiops);
// All dirnames are guaranteed to end with '/'.
std::string file_dirname = flag_dir + "PKT" + std::to_string(thread) + "/";
std::string index_dirname = flag_dir + "IDX" + std::to_string(thread) + "/";
Packet p;
int64_t micros = GetCurrentTimeMicros();
CHECK_SUCCESS(
output.Rotate(file_dirname, micros, flag_preallocate_file_mb << 20));
Index* index = NULL;
if (flag_index) {
index = new Index(index_dirname, micros);
} else {
LOG(ERROR) << "Indexing turned off";
}
int64_t start = GetCurrentTimeMicros();
int64_t lastlog = 0;
int64_t blocks = 0;
int64_t block_offset = 0;
for (int64_t remaining = flag_count; remaining != 0 && run_threads;) {
CHECK_SUCCESS(output.CheckForCompletedOps(false));
int64_t current_micros = GetCurrentTimeMicros();
// Rotate file if necessary.
int64_t current_file_age_secs =
(current_micros - micros) / kNumMicrosPerSecond;
if (block_offset == flag_filesize_mb ||
current_file_age_secs > flag_fileage_sec) {
VLOG(1) << "Rotating file " << micros << " with " << block_offset
<< " blocks";
// File size got too big, rotate file.
micros = current_micros;
block_offset = 0;
CHECK_SUCCESS(
output.Rotate(file_dirname, micros, flag_preallocate_file_mb << 20));
if (flag_index) {
write_index->Put(index);
index = new Index(index_dirname, micros);
}
}
// Read in a new block from AF_PACKET.
Block b;
CHECK_SUCCESS(v3->NextBlock(&b, kNumMillisPerSecond));
if (b.Empty()) {
continue;
}
// Index all packets if necessary.
if (flag_index) {
for (; remaining != 0 && b.Next(&p); remaining--) {
index->Process(p, block_offset * flag_blocksize_kb * 1024);
}
}
blocks++;
block_offset++;
// Log stats every 100MB or at least 1/minute.
if (blocks % 100 == 0 ||
lastlog < current_micros - 60 * kNumMicrosPerSecond) {
lastlog = current_micros;
double duration = (current_micros - start) * 1.0 / kNumMicrosPerSecond;
Stats stats;
Error stats_err = v3->GetStats(&stats);
if (SUCCEEDED(stats_err)) {
LOG(INFO) << "Thread " << thread << " stats: MB=" << blocks
<< " secs=" << duration << " MBps=" << (blocks / duration)
<< " " << stats.String();
} else {
LOG(ERROR) << "Unable to get stats: " << *stats_err;
}
}
// Start an async write of the current block. Could block
// waiting for the write 'aiops' writes ago.
CHECK_SUCCESS(output.Write(&b));
dog.Feed();
}
VLOG(1) << "Finishing thread " << thread;
// Write out the last index.
if (flag_index) {
write_index->Put(index);
}
// Close last open file.
CHECK_SUCCESS(output.Flush());
LOG(INFO) << "Finished thread " << thread << " successfully";
}
int Main(int argc, char** argv) {
LOG_IF_ERROR(Errno(prctl(PR_SET_PDEATHSIG, SIGTERM)), "prctl PDEATHSIG");
ParseOptions(argc, argv);
VLOG(1) << "Stenotype running with these arguments:";
for (int i = 0; i < argc; i++) {
VLOG(1) << i << ":\t\"" << argv[i] << "\"";
}
LOG(INFO) << "Starting, page size is " << getpagesize();
// Sanity check flags and setup options.
CHECK(flag_filesize_mb <= 4 << 10);
CHECK(flag_filesize_mb > 1);
CHECK(flag_filesize_mb >= flag_aiops);
CHECK(flag_blocks >= 16); // arbitrary lower limit.
CHECK(flag_threads >= 1);
CHECK(flag_aiops <= flag_blocks);
CHECK(flag_dir != "");
CHECK(flag_blockage_sec <= flag_fileage_sec);
CHECK(flag_blockage_sec > 0);
CHECK(flag_fileage_sec % flag_blockage_sec == 0);
CHECK(flag_blocksize_kb >= 10);
CHECK(flag_blocksize_kb * 1024 >= (uint64_t)(getpagesize()));
CHECK((flag_blocksize_kb * 1024) % (uint64_t)(getpagesize()) == 0);
if (flag_dir[flag_dir.size() - 1] != '/') {
flag_dir += "/";
}
// Before we drop any privileges, set up our sniffing sockets.
// We have to do this before calling DropPrivileges, which does a
// setuid/setgid and could lose us the ability to do this at a later date.
std::vector<Packets*> sockets;
for (int i = 0; i < flag_threads; i++) {
if (flag_testimony.empty()) {
LOG(INFO) << "Setting up AF_PACKET sockets for packet reading";
int socktype = SOCK_RAW;
struct tpacket_req3 options;
memset(&options, 0, sizeof(options));
options.tp_block_size = flag_blocksize_kb * 1024;
options.tp_block_nr = flag_blocks;
options.tp_frame_size = flag_blocksize_kb * 1024; // doesn't matter
options.tp_frame_nr = 0; // computed for us.
options.tp_retire_blk_tov = flag_blockage_sec * kNumMillisPerSecond - 1;
// Set up AF_PACKET packet reading.
PacketsV3::Builder builder;
CHECK_SUCCESS(builder.SetUp(socktype, options));
CHECK_SUCCESS(builder.SetPromisc(flag_promisc));
int fanout_id = getpid();
if (flag_fanout_id > 0) {
fanout_id = flag_fanout_id;
}
if (flag_fanout_id > 0 || flag_threads > 1) {
CHECK_SUCCESS(builder.SetFanout(flag_fanout_type, fanout_id));
}
if (!flag_filter.empty()) {
CHECK_SUCCESS(builder.SetFilter(flag_filter));
}
Packets* v3;
CHECK_SUCCESS(builder.Bind(flag_iface, &v3));
sockets.push_back(v3);
} else {
#ifdef TESTIMONY
LOG(INFO) << "Connecting to testimony socket for packet reading";
testimony t;
CHECK_SUCCESS(NegErrno(testimony_connect(&t, flag_testimony.c_str())));
CHECK(flag_threads == testimony_conn(t)->fanout_size)
<< "--threads does not match testimony fanout size";
CHECK(testimony_conn(t)->block_size == flag_blocksize_kb * 1024)
<< "Testimony does not supply blocks of size " << flag_blocksize_kb
<< "KB";
testimony_conn(t)->fanout_index = i;
CHECK_SUCCESS(NegErrno(testimony_init(t)));
sockets.push_back(new TestimonyPackets(t));
#else
LOG(FATAL) << "invalid --testimony flag, testimony not compiled in";
#endif
}
}
// To be safe, also set umask before any threads are created.
umask(0077);
// Now that we have sockets, drop privileges.
// We HAVE to do this before we start any threads, since it's unclear whether
// setXid will set the IDs for the all process threads or just the current
// one. This should also be done before signal masking, because apparently
// sometimes Linux sends a SIGSETXID signal to threads during this, and if
// that is ignored setXid will hang forever.
DropPrivileges();
// Start a thread whose sole purpose is to handle signals.
// Signal handling in a multi-threaded application is HARD. This binary
// wants to handle signals very simply: one thread catches SIGINT/SIGTERM and
// sets a bool accordingly. However, Linux will deliver the signal to one
// (random) thread. How to handle this? First, we create the one single
// thread that is going to get signals...
std::thread signal_thread(&HandleSignalsThread);
signal_thread.detach();
// ... Then, we block those signals from being handled by this thread or any
// of its children. All other threads MUST be created after this.
sigset_t sigset;
sigemptyset(&sigset);
sigaddset(&sigset, SIGINT);
sigaddset(&sigset, SIGTERM);
CHECK_SUCCESS(Errno(pthread_sigmask(SIG_BLOCK, &sigset, NULL)));
// Now, we can finally start the threads that read in packets, index them, and
// write them to disk.
auto write_indexes = new st::ProducerConsumerQueue[flag_threads];
VLOG(1) << "Starting writing threads";
std::vector<std::thread*> threads;
for (int i = 0; i < flag_threads; i++) {
VLOG(1) << "Starting thread " << i;
threads.push_back(
new std::thread(&RunThread, i, &write_indexes[i], sockets[i]));
}
// To avoid blocking on index writes, each writer thread has a secondary
// thread just for creating and writing the indexes. We pass to-write
// indexes through to the writing thread via the write_index FIFO queue.
// TODO(gconnell): Move index writing thread creation into RunThread.
std::vector<std::thread*> index_threads;
if (flag_index) {
VLOG(1) << "Starting indexing threads";
for (int i = 0; i < flag_threads; i++) {
std::thread* t = new std::thread(&WriteIndexes, i, &write_indexes[i]);
index_threads.push_back(t);
}
}
// Drop all privileges we need. Note: we because of what we've already done,
// we really don't need much anymore. No need to create new threads, to write
// files, to open sockets... we basically just hang around waiting for all the
// other threads to finish.
DropCommonThreadPrivileges();
for (auto thread : threads) {
VLOG(1) << "===============Waiting for thread==============";
CHECK(thread->joinable());
thread->join();
VLOG(1) << "Thread finished";
delete thread;
}
VLOG(1) << "Finished all threads";
if (flag_index) {
for (int i = 0; i < flag_threads; i++) {
VLOG(1) << "Closing write index queue " << i << ", waiting for thread";
write_indexes[i].Close();
CHECK(index_threads[i]->joinable());
index_threads[i]->join();
VLOG(1) << "Index thread finished";
delete index_threads[i];
}
}
delete[] write_indexes;
LOG(INFO) << "Process exiting successfully";
main_complete.Notify();
return 0;
}
} // namespace st
int main(int argc, char** argv) { return st::Main(argc, argv); }
|