1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
|
/////////////////////////////////////////////////////////////////////////////////
//
// Levenberg - Marquardt non-linear minimization algorithm
// Copyright (C) 2004-05 Manolis Lourakis (lourakis at ics forth gr)
// Institute of Computer Science, Foundation for Research & Technology - Hellas
// Heraklion, Crete, Greece.
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#ifndef LM_REAL // not included by lmlec.c
#error This file should not be compiled directly!
#endif
/* precision-specific definitions */
#define LMLEC_DATA LM_ADD_PREFIX(lmlec_data)
#define LMLEC_ELIM LM_ADD_PREFIX(lmlec_elim)
#define LMLEC_FUNC LM_ADD_PREFIX(lmlec_func)
#define LMLEC_JACF LM_ADD_PREFIX(lmlec_jacf)
#define LEVMAR_LEC_DER LM_ADD_PREFIX(levmar_lec_der)
#define LEVMAR_LEC_DIF LM_ADD_PREFIX(levmar_lec_dif)
#define LEVMAR_DER LM_ADD_PREFIX(levmar_der)
#define LEVMAR_DIF LM_ADD_PREFIX(levmar_dif)
#define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult)
#define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)
#define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx)
#define GEQP3 LM_MK_LAPACK_NAME(geqp3)
#define ORGQR LM_MK_LAPACK_NAME(orgqr)
#define TRTRI LM_MK_LAPACK_NAME(trtri)
struct LMLEC_DATA{
LM_REAL *c, *Z, *p, *jac;
int ncnstr;
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata);
void (*jacf)(LM_REAL *p, LM_REAL *jac, int m, int n, void *adata);
void *adata;
};
/* prototypes for LAPACK routines */
extern int GEQP3(int *m, int *n, LM_REAL *a, int *lda, int *jpvt,
LM_REAL *tau, LM_REAL *work, int *lwork, int *info);
extern int ORGQR(int *m, int *n, int *k, LM_REAL *a, int *lda, LM_REAL *tau,
LM_REAL *work, int *lwork, int *info);
extern int TRTRI(char *uplo, char *diag, int *n, LM_REAL *a, int *lda, int *info);
/*
* This function implements an elimination strategy for linearly constrained
* optimization problems. The strategy relies on QR decomposition to transform
* an optimization problem constrained by Ax=b to an equivalent, unconstrained
* one. Also referred to as "null space" or "reduced Hessian" method.
* See pp. 430-433 (chap. 15) of "Numerical Optimization" by Nocedal-Wright
* for details.
*
* A is mxn with m<=n and rank(A)=m
* Two matrices Y and Z of dimensions nxm and nx(n-m) are computed from A^T so that
* their columns are orthonormal and every x can be written as x=Y*b + Z*x_z=
* c + Z*x_z, where c=Y*b is a fixed vector of dimension n and x_z is an
* arbitrary vector of dimension n-m. Then, the problem of minimizing f(x)
* subject to Ax=b is equivalent to minimizing f(c + Z*x_z) with no constraints.
* The computed Y and Z are such that any solution of Ax=b can be written as
* x=Y*x_y + Z*x_z for some x_y, x_z. Furthermore, A*Y is nonsingular, A*Z=0
* and Z spans the null space of A.
*
* The function accepts A, b and computes c, Y, Z. If b or c is NULL, c is not
* computed. Also, Y can be NULL in which case it is not referenced.
* The function returns LM_ERROR in case of error, A's computed rank if successful
*
*/
static int LMLEC_ELIM(LM_REAL *A, LM_REAL *b, LM_REAL *c, LM_REAL *Y, LM_REAL *Z, int m, int n)
{
static LM_REAL eps=LM_CNST(-1.0);
LM_REAL *buf=NULL;
LM_REAL *a, *tau, *work, *r, aux;
register LM_REAL tmp;
int a_sz, jpvt_sz, tau_sz, r_sz, Y_sz, worksz;
int info, rank, *jpvt, tot_sz, mintmn, tm, tn;
register int i, j, k;
if(m>n){
fprintf(stderr, RCAT("matrix of constraints cannot have more rows than columns in", LMLEC_ELIM) "()!\n");
return LM_ERROR;
}
tm=n; tn=m; // transpose dimensions
mintmn=m;
/* calculate required memory size */
worksz=-1; // workspace query. Optimal work size is returned in aux
//ORGQR((int *)&tm, (int *)&tm, (int *)&mintmn, NULL, (int *)&tm, NULL, (LM_REAL *)&aux, &worksz, &info);
GEQP3((int *)&tm, (int *)&tn, NULL, (int *)&tm, NULL, NULL, (LM_REAL *)&aux, (int *)&worksz, &info);
worksz=(int)aux;
a_sz=tm*tm; // tm*tn is enough for xgeqp3()
jpvt_sz=tn;
tau_sz=mintmn;
r_sz=mintmn*mintmn; // actually smaller if a is not of full row rank
Y_sz=(Y)? 0 : tm*tn;
tot_sz=(a_sz + tau_sz + r_sz + worksz + Y_sz)*sizeof(LM_REAL) + jpvt_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
buf=(LM_REAL *)malloc(tot_sz); /* allocate a "big" memory chunk at once */
if(!buf){
fprintf(stderr, RCAT("Memory allocation request failed in ", LMLEC_ELIM) "()\n");
return LM_ERROR;
}
a=buf;
tau=a+a_sz;
r=tau+tau_sz;
work=r+r_sz;
if(!Y){
Y=work+worksz;
jpvt=(int *)(Y+Y_sz);
}
else
jpvt=(int *)(work+worksz);
/* copy input array so that LAPACK won't destroy it. Note that copying is
* done in row-major order, which equals A^T in column-major
*/
for(i=0; i<tm*tn; ++i)
a[i]=A[i];
/* clear jpvt */
for(i=0; i<jpvt_sz; ++i) jpvt[i]=0;
/* rank revealing QR decomposition of A^T*/
GEQP3((int *)&tm, (int *)&tn, a, (int *)&tm, jpvt, tau, work, (int *)&worksz, &info);
//dgeqpf_((int *)&tm, (int *)&tn, a, (int *)&tm, jpvt, tau, work, &info);
/* error checking */
if(info!=0){
if(info<0){
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQP3) " in ", LMLEC_ELIM) "()\n", -info);
}
else if(info>0){
fprintf(stderr, RCAT(RCAT("unknown LAPACK error (%d) for ", GEQP3) " in ", LMLEC_ELIM) "()\n", info);
}
free(buf);
return LM_ERROR;
}
/* the upper triangular part of a now contains the upper triangle of the unpermuted R */
if(eps<0.0){
LM_REAL aux;
/* compute machine epsilon. DBL_EPSILON should do also */
for(eps=LM_CNST(1.0); aux=eps+LM_CNST(1.0), aux-LM_CNST(1.0)>0.0; eps*=LM_CNST(0.5))
;
eps*=LM_CNST(2.0);
}
tmp=tm*LM_CNST(10.0)*eps*FABS(a[0]); // threshold. tm is max(tm, tn)
tmp=(tmp>LM_CNST(1E-12))? tmp : LM_CNST(1E-12); // ensure that threshold is not too small
/* compute A^T's numerical rank by counting the non-zeros in R's diagonal */
for(i=rank=0; i<mintmn; ++i)
if(a[i*(tm+1)]>tmp || a[i*(tm+1)]<-tmp) ++rank; /* loop across R's diagonal elements */
else break; /* diagonal is arranged in absolute decreasing order */
if(rank<tn){
fprintf(stderr, RCAT("\nConstraints matrix in ", LMLEC_ELIM) "() is not of full row rank (i.e. %d < %d)!\n"
"Make sure that you do not specify redundant or inconsistent constraints.\n\n", rank, tn);
free(buf);
return LM_ERROR;
}
/* compute the permuted inverse transpose of R */
/* first, copy R from the upper triangular part of a to r. R is rank x rank */
for(j=0; j<rank; ++j){
for(i=0; i<=j; ++i)
r[i+j*rank]=a[i+j*tm];
for(i=j+1; i<rank; ++i)
r[i+j*rank]=0.0; // lower part is zero
}
/* compute the inverse */
TRTRI("U", "N", (int *)&rank, r, (int *)&rank, &info);
/* error checking */
if(info!=0){
if(info<0){
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRI) " in ", LMLEC_ELIM) "()\n", -info);
}
else if(info>0){
fprintf(stderr, RCAT(RCAT("A(%d, %d) is exactly zero for ", TRTRI) " (singular matrix) in ", LMLEC_ELIM) "()\n", info, info);
}
free(buf);
return LM_ERROR;
}
/* then, transpose r in place */
for(i=0; i<rank; ++i)
for(j=i+1; j<rank; ++j){
tmp=r[i+j*rank];
k=j+i*rank;
r[i+j*rank]=r[k];
r[k]=tmp;
}
/* finally, permute R^-T using Y as intermediate storage */
for(j=0; j<rank; ++j)
for(i=0, k=jpvt[j]-1; i<rank; ++i)
Y[i+k*rank]=r[i+j*rank];
for(i=0; i<rank*rank; ++i) // copy back to r
r[i]=Y[i];
/* resize a to be tm x tm, filling with zeroes */
for(i=tm*tn; i<tm*tm; ++i)
a[i]=0.0;
/* compute Q in a as the product of elementary reflectors. Q is tm x tm */
ORGQR((int *)&tm, (int *)&tm, (int *)&mintmn, a, (int *)&tm, tau, work, &worksz, &info);
/* error checking */
if(info!=0){
if(info<0){
fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", ORGQR) " in ", LMLEC_ELIM) "()\n", -info);
}
else if(info>0){
fprintf(stderr, RCAT(RCAT("unknown LAPACK error (%d) for ", ORGQR) " in ", LMLEC_ELIM) "()\n", info);
}
free(buf);
return LM_ERROR;
}
/* compute Y=Q_1*R^-T*P^T. Y is tm x rank */
for(i=0; i<tm; ++i)
for(j=0; j<rank; ++j){
for(k=0, tmp=0.0; k<rank; ++k)
tmp+=a[i+k*tm]*r[k+j*rank];
Y[i*rank+j]=tmp;
}
if(b && c){
/* compute c=Y*b */
for(i=0; i<tm; ++i){
for(j=0, tmp=0.0; j<rank; ++j)
tmp+=Y[i*rank+j]*b[j];
c[i]=tmp;
}
}
/* copy Q_2 into Z. Z is tm x (tm-rank) */
for(j=0; j<tm-rank; ++j)
for(i=0, k=j+rank; i<tm; ++i)
Z[i*(tm-rank)+j]=a[i+k*tm];
free(buf);
return rank;
}
/* constrained measurements: given pp, compute the measurements at c + Z*pp */
static void LMLEC_FUNC(LM_REAL *pp, LM_REAL *hx, int mm, int n, void *adata)
{
struct LMLEC_DATA *data=(struct LMLEC_DATA *)adata;
int m;
register int i, j;
register LM_REAL sum;
LM_REAL *c, *Z, *p, *Zimm;
m=mm+data->ncnstr;
c=data->c;
Z=data->Z;
p=data->p;
/* p=c + Z*pp */
for(i=0; i<m; ++i){
Zimm=Z+i*mm;
for(j=0, sum=c[i]; j<mm; ++j)
sum+=Zimm[j]*pp[j]; // sum+=Z[i*mm+j]*pp[j];
p[i]=sum;
}
(*(data->func))(p, hx, m, n, data->adata);
}
/* constrained Jacobian: given pp, compute the Jacobian at c + Z*pp
* Using the chain rule, the Jacobian with respect to pp equals the
* product of the Jacobian with respect to p (at c + Z*pp) times Z
*/
static void LMLEC_JACF(LM_REAL *pp, LM_REAL *jacjac, int mm, int n, void *adata)
{
struct LMLEC_DATA *data=(struct LMLEC_DATA *)adata;
int m;
register int i, j, l;
register LM_REAL sum, *aux1, *aux2;
LM_REAL *c, *Z, *p, *jac;
m=mm+data->ncnstr;
c=data->c;
Z=data->Z;
p=data->p;
jac=data->jac;
/* p=c + Z*pp */
for(i=0; i<m; ++i){
aux1=Z+i*mm;
for(j=0, sum=c[i]; j<mm; ++j)
sum+=aux1[j]*pp[j]; // sum+=Z[i*mm+j]*pp[j];
p[i]=sum;
}
(*(data->jacf))(p, jac, m, n, data->adata);
/* compute jac*Z in jacjac */
if(n*m<=__BLOCKSZ__SQ){ // this is a small problem
/* This is the straightforward way to compute jac*Z. However, due to
* its noncontinuous memory access pattern, it incures many cache misses when
* applied to large minimization problems (i.e. problems involving a large
* number of free variables and measurements), in which jac is too large to
* fit in the L1 cache. For such problems, a cache-efficient blocking scheme
* is preferable. On the other hand, the straightforward algorithm is faster
* on small problems since in this case it avoids the overheads of blocking.
*/
for(i=0; i<n; ++i){
aux1=jac+i*m;
aux2=jacjac+i*mm;
for(j=0; j<mm; ++j){
for(l=0, sum=0.0; l<m; ++l)
sum+=aux1[l]*Z[l*mm+j]; // sum+=jac[i*m+l]*Z[l*mm+j];
aux2[j]=sum; // jacjac[i*mm+j]=sum;
}
}
}
else{ // this is a large problem
/* Cache efficient computation of jac*Z based on blocking
*/
#define __MIN__(x, y) (((x)<=(y))? (x) : (y))
register int jj, ll;
for(jj=0; jj<mm; jj+=__BLOCKSZ__){
for(i=0; i<n; ++i){
aux1=jacjac+i*mm;
for(j=jj; j<__MIN__(jj+__BLOCKSZ__, mm); ++j)
aux1[j]=0.0; //jacjac[i*mm+j]=0.0;
}
for(ll=0; ll<m; ll+=__BLOCKSZ__){
for(i=0; i<n; ++i){
aux1=jacjac+i*mm; aux2=jac+i*m;
for(j=jj; j<__MIN__(jj+__BLOCKSZ__, mm); ++j){
sum=0.0;
for(l=ll; l<__MIN__(ll+__BLOCKSZ__, m); ++l)
sum+=aux2[l]*Z[l*mm+j]; //jac[i*m+l]*Z[l*mm+j];
aux1[j]+=sum; //jacjac[i*mm+j]+=sum;
}
}
}
}
}
}
#undef __MIN__
/*
* This function is similar to LEVMAR_DER except that the minimization
* is performed subject to the linear constraints A p=b, A is kxm, b kx1
*
* This function requires an analytic Jacobian. In case the latter is unavailable,
* use LEVMAR_LEC_DIF() bellow
*
*/
int LEVMAR_LEC_DER(
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */
void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata), /* function to evaluate the Jacobian \part x / \part p */
LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */
LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */
int m, /* I: parameter vector dimension (i.e. #unknowns) */
int n, /* I: measurement vector dimension */
LM_REAL *A, /* I: constraints matrix, kxm */
LM_REAL *b, /* I: right hand constraints vector, kx1 */
int k, /* I: number of constraints (i.e. A's #rows) */
int itmax, /* I: maximum number of iterations */
LM_REAL opts[4], /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,
* stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used
*/
LM_REAL info[LM_INFO_SZ],
/* O: information regarding the minimization. Set to NULL if don't care
* info[0]= ||e||_2 at initial p.
* info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
* info[5]= # iterations,
* info[6]=reason for terminating: 1 - stopped by small gradient J^T e
* 2 - stopped by small Dp
* 3 - stopped by itmax
* 4 - singular matrix. Restart from current p with increased mu
* 5 - no further error reduction is possible. Restart with increased mu
* 6 - stopped by small ||e||_2
* 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
* info[7]= # function evaluations
* info[8]= # Jacobian evaluations
* info[9]= # linear systems solved, i.e. # attempts for reducing error
*/
LM_REAL *work, /* working memory at least LM_LEC_DER_WORKSZ() reals large, allocated if NULL */
LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
void *adata) /* pointer to possibly additional data, passed uninterpreted to func & jacf.
* Set to NULL if not needed
*/
{
struct LMLEC_DATA data;
LM_REAL *ptr, *Z, *pp, *p0, *Zimm; /* Z is mxmm */
int mm, ret;
register int i, j;
register LM_REAL tmp;
LM_REAL locinfo[LM_INFO_SZ];
if(!jacf){
fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_LEC_DER)
RCAT("().\nIf no such function is available, use ", LEVMAR_LEC_DIF) RCAT("() rather than ", LEVMAR_LEC_DER) "()\n");
return LM_ERROR;
}
mm=m-k;
if(n<mm){
fprintf(stderr, LCAT(LEVMAR_LEC_DER, "(): cannot solve a problem with fewer measurements + equality constraints [%d + %d] than unknowns [%d]\n"), n, k, m);
return LM_ERROR;
}
ptr=(LM_REAL *)malloc((2*m + m*mm + n*m + mm)*sizeof(LM_REAL));
if(!ptr){
fprintf(stderr, LCAT(LEVMAR_LEC_DER, "(): memory allocation request failed\n"));
return LM_ERROR;
}
data.p=p;
p0=ptr;
data.c=p0+m;
data.Z=Z=data.c+m;
data.jac=data.Z+m*mm;
pp=data.jac+n*m;
data.ncnstr=k;
data.func=func;
data.jacf=jacf;
data.adata=adata;
ret=LMLEC_ELIM(A, b, data.c, NULL, Z, k, m); // compute c, Z
if(ret==LM_ERROR){
free(ptr);
return LM_ERROR;
}
/* compute pp s.t. p = c + Z*pp or (Z^T Z)*pp=Z^T*(p-c)
* Due to orthogonality, Z^T Z = I and the last equation
* becomes pp=Z^T*(p-c). Also, save the starting p in p0
*/
for(i=0; i<m; ++i){
p0[i]=p[i];
p[i]-=data.c[i];
}
/* Z^T*(p-c) */
for(i=0; i<mm; ++i){
for(j=0, tmp=0.0; j<m; ++j)
tmp+=Z[j*mm+i]*p[j];
pp[i]=tmp;
}
/* compute the p corresponding to pp (i.e. c + Z*pp) and compare with p0 */
for(i=0; i<m; ++i){
Zimm=Z+i*mm;
for(j=0, tmp=data.c[i]; j<mm; ++j)
tmp+=Zimm[j]*pp[j]; // tmp+=Z[i*mm+j]*pp[j];
if(FABS(tmp-p0[i])>LM_CNST(1E-03))
fprintf(stderr, RCAT("Warning: component %d of starting point not feasible in ", LEVMAR_LEC_DER) "()! [%.10g reset to %.10g]\n",
i, p0[i], tmp);
}
if(!info) info=locinfo; /* make sure that LEVMAR_DER() is called with non-null info */
/* note that covariance computation is not requested from LEVMAR_DER() */
ret=LEVMAR_DER(LMLEC_FUNC, LMLEC_JACF, pp, x, mm, n, itmax, opts, info, work, NULL, (void *)&data);
/* p=c + Z*pp */
for(i=0; i<m; ++i){
Zimm=Z+i*mm;
for(j=0, tmp=data.c[i]; j<mm; ++j)
tmp+=Zimm[j]*pp[j]; // tmp+=Z[i*mm+j]*pp[j];
p[i]=tmp;
}
/* compute the covariance from the Jacobian in data.jac */
if(covar){
LEVMAR_TRANS_MAT_MAT_MULT(data.jac, covar, n, m); /* covar = J^T J */
LEVMAR_COVAR(covar, covar, info[1], m, n);
}
free(ptr);
return ret;
}
/* Similar to the LEVMAR_LEC_DER() function above, except that the Jacobian is approximated
* with the aid of finite differences (forward or central, see the comment for the opts argument)
*/
int LEVMAR_LEC_DIF(
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */
LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */
LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */
int m, /* I: parameter vector dimension (i.e. #unknowns) */
int n, /* I: measurement vector dimension */
LM_REAL *A, /* I: constraints matrix, kxm */
LM_REAL *b, /* I: right hand constraints vector, kx1 */
int k, /* I: number of constraints (i.e. A's #rows) */
int itmax, /* I: maximum number of iterations */
LM_REAL opts[5], /* I: opts[0-3] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the
* scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and
* the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used.
* If \delta<0, the Jacobian is approximated with central differences which are more accurate
* (but slower!) compared to the forward differences employed by default.
*/
LM_REAL info[LM_INFO_SZ],
/* O: information regarding the minimization. Set to NULL if don't care
* info[0]= ||e||_2 at initial p.
* info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
* info[5]= # iterations,
* info[6]=reason for terminating: 1 - stopped by small gradient J^T e
* 2 - stopped by small Dp
* 3 - stopped by itmax
* 4 - singular matrix. Restart from current p with increased mu
* 5 - no further error reduction is possible. Restart with increased mu
* 6 - stopped by small ||e||_2
* 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
* info[7]= # function evaluations
* info[8]= # Jacobian evaluations
* info[9]= # linear systems solved, i.e. # attempts for reducing error
*/
LM_REAL *work, /* working memory at least LM_LEC_DIF_WORKSZ() reals large, allocated if NULL */
LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
void *adata) /* pointer to possibly additional data, passed uninterpreted to func.
* Set to NULL if not needed
*/
{
struct LMLEC_DATA data;
LM_REAL *ptr, *Z, *pp, *p0, *Zimm; /* Z is mxmm */
int mm, ret;
register int i, j;
register LM_REAL tmp;
LM_REAL locinfo[LM_INFO_SZ];
mm=m-k;
if(n<mm){
fprintf(stderr, LCAT(LEVMAR_LEC_DIF, "(): cannot solve a problem with fewer measurements + equality constraints [%d + %d] than unknowns [%d]\n"), n, k, m);
return LM_ERROR;
}
ptr=(LM_REAL *)malloc((2*m + m*mm + mm)*sizeof(LM_REAL));
if(!ptr){
fprintf(stderr, LCAT(LEVMAR_LEC_DIF, "(): memory allocation request failed\n"));
return LM_ERROR;
}
data.p=p;
p0=ptr;
data.c=p0+m;
data.Z=Z=data.c+m;
data.jac=NULL;
pp=data.Z+m*mm;
data.ncnstr=k;
data.func=func;
data.jacf=NULL;
data.adata=adata;
ret=LMLEC_ELIM(A, b, data.c, NULL, Z, k, m); // compute c, Z
if(ret==LM_ERROR){
free(ptr);
return LM_ERROR;
}
/* compute pp s.t. p = c + Z*pp or (Z^T Z)*pp=Z^T*(p-c)
* Due to orthogonality, Z^T Z = I and the last equation
* becomes pp=Z^T*(p-c). Also, save the starting p in p0
*/
for(i=0; i<m; ++i){
p0[i]=p[i];
p[i]-=data.c[i];
}
/* Z^T*(p-c) */
for(i=0; i<mm; ++i){
for(j=0, tmp=0.0; j<m; ++j)
tmp+=Z[j*mm+i]*p[j];
pp[i]=tmp;
}
/* compute the p corresponding to pp (i.e. c + Z*pp) and compare with p0 */
for(i=0; i<m; ++i){
Zimm=Z+i*mm;
for(j=0, tmp=data.c[i]; j<mm; ++j)
tmp+=Zimm[j]*pp[j]; // tmp+=Z[i*mm+j]*pp[j];
if(FABS(tmp-p0[i])>LM_CNST(1E-03))
fprintf(stderr, RCAT("Warning: component %d of starting point not feasible in ", LEVMAR_LEC_DIF) "()! [%.10g reset to %.10g]\n",
i, p0[i], tmp);
}
if(!info) info=locinfo; /* make sure that LEVMAR_DIF() is called with non-null info */
/* note that covariance computation is not requested from LEVMAR_DIF() */
ret=LEVMAR_DIF(LMLEC_FUNC, pp, x, mm, n, itmax, opts, info, work, NULL, (void *)&data);
/* p=c + Z*pp */
for(i=0; i<m; ++i){
Zimm=Z+i*mm;
for(j=0, tmp=data.c[i]; j<mm; ++j)
tmp+=Zimm[j]*pp[j]; // tmp+=Z[i*mm+j]*pp[j];
p[i]=tmp;
}
/* compute the Jacobian with finite differences and use it to estimate the covariance */
if(covar){
LM_REAL *hx, *wrk, *jac;
hx=(LM_REAL *)malloc((2*n+n*m)*sizeof(LM_REAL));
if(!hx){
fprintf(stderr, LCAT(LEVMAR_LEC_DIF, "(): memory allocation request failed\n"));
free(ptr);
return LM_ERROR;
}
wrk=hx+n;
jac=wrk+n;
(*func)(p, hx, m, n, adata); /* evaluate function at p */
LEVMAR_FDIF_FORW_JAC_APPROX(func, p, hx, wrk, (LM_REAL)LM_DIFF_DELTA, jac, m, n, adata); /* compute the Jacobian at p */
LEVMAR_TRANS_MAT_MAT_MULT(jac, covar, n, m); /* covar = J^T J */
LEVMAR_COVAR(covar, covar, info[1], m, n);
free(hx);
}
free(ptr);
return ret;
}
/* undefine all. THIS MUST REMAIN AT THE END OF THE FILE */
#undef LMLEC_DATA
#undef LMLEC_ELIM
#undef LMLEC_FUNC
#undef LMLEC_JACF
#undef LEVMAR_FDIF_FORW_JAC_APPROX
#undef LEVMAR_COVAR
#undef LEVMAR_TRANS_MAT_MAT_MULT
#undef LEVMAR_LEC_DER
#undef LEVMAR_LEC_DIF
#undef LEVMAR_DER
#undef LEVMAR_DIF
#undef GEQP3
#undef ORGQR
#undef TRTRI
|