1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
#ifndef STK_BIQUAD_H
#define STK_BIQUAD_H
#include "Filter.h"
namespace stk {
/***************************************************/
/*! \class BiQuad
\brief STK biquad (two-pole, two-zero) filter class.
This class implements a two-pole, two-zero digital filter.
Methods are provided for creating a resonance or notch in the
frequency response while maintaining a constant filter gain.
Formulae used calculate coefficients for lowpass, highpass,
bandpass, bandreject and allpass are found on pg. 55 of
Udo Zölzer's "DAFX - Digital Audio Effects" (2011 2nd ed).
by Perry R. Cook and Gary P. Scavone, 1995--2023.
*/
/***************************************************/
const StkFloat RECIP_SQRT_2 = static_cast<StkFloat>( M_SQRT1_2 );
class BiQuad : public Filter
{
public:
//! Default constructor creates a second-order pass-through filter.
BiQuad();
//! Class destructor.
~BiQuad();
//! A function to enable/disable the automatic updating of class data when the STK sample rate changes.
void ignoreSampleRateChange( bool ignore = true ) { ignoreSampleRateChange_ = ignore; };
//! Set all filter coefficients.
void setCoefficients( StkFloat b0, StkFloat b1, StkFloat b2, StkFloat a1, StkFloat a2, bool clearState = false );
//! Set the b[0] coefficient value.
void setB0( StkFloat b0 ) { b_[0] = b0; };
//! Set the b[1] coefficient value.
void setB1( StkFloat b1 ) { b_[1] = b1; };
//! Set the b[2] coefficient value.
void setB2( StkFloat b2 ) { b_[2] = b2; };
//! Set the a[1] coefficient value.
void setA1( StkFloat a1 ) { a_[1] = a1; };
//! Set the a[2] coefficient value.
void setA2( StkFloat a2 ) { a_[2] = a2; };
//! Sets the filter coefficients for a resonance at \e frequency (in Hz).
/*!
This method determines the filter coefficients corresponding to
two complex-conjugate poles with the given \e frequency (in Hz)
and \e radius from the z-plane origin. If \e normalize is true,
the filter zeros are placed at z = 1, z = -1, and the coefficients
are then normalized to produce a constant unity peak gain
(independent of the filter \e gain parameter). The resulting
filter frequency response has a resonance at the given \e
frequency. The closer the poles are to the unit-circle (\e radius
close to one), the narrower the resulting resonance width.
An unstable filter will result for \e radius >= 1.0. The
\e frequency value should be between zero and half the sample rate.
*/
void setResonance( StkFloat frequency, StkFloat radius, bool normalize = false );
//! Set the filter coefficients for a notch at \e frequency (in Hz).
/*!
This method determines the filter coefficients corresponding to
two complex-conjugate zeros with the given \e frequency (in Hz)
and \e radius from the z-plane origin. No filter normalization is
attempted. The \e frequency value should be between zero and half
the sample rate. The \e radius value should be positive.
*/
void setNotch( StkFloat frequency, StkFloat radius );
//! Set the filter coefficients for a low-pass with cutoff frequency \e fc (in Hz) and Q-factor \e Q.
/*!
This method determines the filter coefficients corresponding to a
low-pass filter with cutoff placed at \e fc, where sloping behaviour
and resonance are determined by \e Q. The default value for \e Q is
1/sqrt(2), resulting in a gradual attenuation of frequencies higher than
\e fc without added resonance. Values greater than this will more
aggressively attenuate frequencies above \e fc while also adding a
resonance at \e fc. Values less than this will result in a more gradual
attenuation of frequencies above \e fc, but will also attenuate
frequencies below \e fc as well. Both \e fc and \e Q must be positive.
*/
void setLowPass( StkFloat fc, StkFloat Q=RECIP_SQRT_2 );
//! Set the filter coefficients for a high-pass with cutoff frequency \e fc (in Hz) and Q-factor \e Q.
/*!
This method determines the filter coefficients corresponding to a high-pass
filter with cutoff placed at \e fc, where sloping behaviour and resonance
are determined by \e Q. The default value for \e Q is 1/sqrt(2), resulting
in a gradual attenuation of frequencies lower than \e fc without added
resonance. Values greater than this will more aggressively attenuate
frequencies below \e fc while also adding a resonance at \e fc. Values less
than this will result in a more gradual attenuation of frequencies below
\e fc, but will also attenuate frequencies above \e fc as well.
Both \e fc and \e Q must be positive.
*/
void setHighPass( StkFloat fc, StkFloat Q=RECIP_SQRT_2 );
//! Set the filter coefficients for a band-pass centered at \e fc (in Hz) with Q-factor \e Q.
/*!
This method determines the filter coefficients corresponding to a band-pass
filter with pass-band centered at \e fc, where band width and slope a
determined by \e Q. Values for \e Q that are less than 1.0 will attenuate
frequencies above and below \e fc more gradually, resulting in a convex
slope and a wider band. Values for \e Q greater than 1.0 will attenuate
frequencies above and below \e fc more aggressively, resulting in a
concave slope and a narrower band. Both \e fc and \e Q must be positive.
*/
void setBandPass( StkFloat fc, StkFloat Q );
//! Set the filter coefficients for a band-reject centered at \e fc (in Hz) with Q-factor \e Q.
/*!
This method determines the filter coefficients corresponding to a
band-reject filter with stop-band centered at \e fc, where band width
and slope are determined by \e Q. Values for \e Q that are less than 1.0
will yield a wider band with greater attenuation of \e fc. Values for \e Q
greater than 1.0 will yield a narrower band with less attenuation of \e fc.
Both \e fc and \e Q must be positive.
*/
void setBandReject( StkFloat fc, StkFloat Q );
//! Set the filter coefficients for an all-pass centered at \e fc (in Hz) with Q-factor \e Q.
/*!
This method determines the filter coefficients corresponding to
an all-pass filter whose phase response crosses -pi radians at \e fc.
High values for \e Q will result in a more instantaenous shift in phase
response at \e fc. Lower values will result in a more gradual shift in
phase response around \e fc. Both \e fc and \e Q must be positive.
*/
void setAllPass( StkFloat fc, StkFloat Q );
//! Sets the filter zeroes for equal resonance gain.
/*!
When using the filter as a resonator, zeroes places at z = 1, z
= -1 will result in a constant gain at resonance of 1 / (1 - R),
where R is the pole radius setting.
*/
void setEqualGainZeroes( void );
//! Return the last computed output value.
StkFloat lastOut( void ) const { return lastFrame_[0]; };
//! Input one sample to the filter and return a reference to one output.
StkFloat tick( StkFloat input );
//! Take a channel of the StkFrames object as inputs to the filter and replace with corresponding outputs.
/*!
The StkFrames argument reference is returned. The \c channel
argument must be less than the number of channels in the
StkFrames argument (the first channel is specified by 0).
However, range checking is only performed if _STK_DEBUG_ is
defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& frames, unsigned int channel = 0 );
//! Take a channel of the \c iFrames object as inputs to the filter and write outputs to the \c oFrames object.
/*!
The \c iFrames object reference is returned. Each channel
argument must be less than the number of channels in the
corresponding StkFrames argument (the first channel is specified
by 0). However, range checking is only performed if _STK_DEBUG_
is defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& iFrames, StkFrames &oFrames, unsigned int iChannel = 0, unsigned int oChannel = 0 );
protected:
virtual void sampleRateChanged( StkFloat newRate, StkFloat oldRate );
// Helper function to update the three intermediate values for the predefined filter types
// along with the feedback filter coefficients. Performs the debug check for fc and Q-factor arguments.
void setCommonFilterValues( StkFloat fc, StkFloat Q );
StkFloat K_;
StkFloat kSqr_;
StkFloat denom_;
};
inline StkFloat BiQuad :: tick( StkFloat input )
{
inputs_[0] = gain_ * input;
lastFrame_[0] = b_[0] * inputs_[0] + b_[1] * inputs_[1] + b_[2] * inputs_[2];
lastFrame_[0] -= a_[2] * outputs_[2] + a_[1] * outputs_[1];
inputs_[2] = inputs_[1];
inputs_[1] = inputs_[0];
outputs_[2] = outputs_[1];
outputs_[1] = lastFrame_[0];
return lastFrame_[0];
}
inline StkFrames& BiQuad :: tick( StkFrames& frames, unsigned int channel )
{
#if defined(_STK_DEBUG_)
if ( channel >= frames.channels() ) {
oStream_ << "BiQuad::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *samples = &frames[channel];
unsigned int hop = frames.channels();
for ( unsigned int i=0; i<frames.frames(); i++, samples += hop ) {
inputs_[0] = gain_ * *samples;
*samples = b_[0] * inputs_[0] + b_[1] * inputs_[1] + b_[2] * inputs_[2];
*samples -= a_[2] * outputs_[2] + a_[1] * outputs_[1];
inputs_[2] = inputs_[1];
inputs_[1] = inputs_[0];
outputs_[2] = outputs_[1];
outputs_[1] = *samples;
}
lastFrame_[0] = outputs_[1];
return frames;
}
inline StkFrames& BiQuad :: tick( StkFrames& iFrames, StkFrames& oFrames, unsigned int iChannel, unsigned int oChannel )
{
#if defined(_STK_DEBUG_)
if ( iChannel >= iFrames.channels() || oChannel >= oFrames.channels() ) {
oStream_ << "BiQuad::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *iSamples = &iFrames[iChannel];
StkFloat *oSamples = &oFrames[oChannel];
unsigned int iHop = iFrames.channels(), oHop = oFrames.channels();
for ( unsigned int i=0; i<iFrames.frames(); i++, iSamples += iHop, oSamples += oHop ) {
inputs_[0] = gain_ * *iSamples;
*oSamples = b_[0] * inputs_[0] + b_[1] * inputs_[1] + b_[2] * inputs_[2];
*oSamples -= a_[2] * outputs_[2] + a_[1] * outputs_[1];
inputs_[2] = inputs_[1];
inputs_[1] = inputs_[0];
outputs_[2] = outputs_[1];
outputs_[1] = *oSamples;
}
lastFrame_[0] = outputs_[1];
return iFrames;
}
} // stk namespace
#endif
|