1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
// controlbee.cpp STK tutorial program
#include "BeeThree.h"
#include "RtAudio.h"
#include "Messager.h"
#include "SKINImsg.h"
#include <math.h>
#include <algorithm>
using std::min;
using namespace stk;
void usage(void) {
// Error function in case of incorrect command-line
// argument specifications.
std::cout << "\nuseage: controlbee file\n";
std::cout << " where file = a SKINI scorefile.\n\n";
exit(0);
}
// The TickData structure holds all the class instances and data that
// are shared by the various processing functions.
struct TickData {
Instrmnt *instrument;
Messager messager;
Skini::Message message;
int counter;
bool haveMessage;
bool done;
// Default constructor.
TickData()
: instrument(0), counter(0), haveMessage(false), done( false ) {}
};
#define DELTA_CONTROL_TICKS 64 // default sample frames between control input checks
// The processMessage() function encapsulates the handling of control
// messages. It can be easily relocated within a program structure
// depending on the desired scheduling scheme.
void processMessage( TickData* data )
{
StkFloat value1 = data->message.floatValues[0];
StkFloat value2 = data->message.floatValues[1];
switch( data->message.type ) {
case __SK_Exit_:
data->done = true;
return;
case __SK_NoteOn_:
if ( value2 == 0.0 ) // velocity is zero ... really a NoteOff
data->instrument->noteOff( 0.5 );
else { // a NoteOn
StkFloat frequency = 220.0 * pow( 2.0, (value1 - 57.0) / 12.0 );
data->instrument->noteOn( frequency, value2 * ONE_OVER_128 );
}
break;
case __SK_NoteOff_:
data->instrument->noteOff( value2 * ONE_OVER_128 );
break;
case __SK_ControlChange_:
data->instrument->controlChange( (int) value1, value2 );
break;
case __SK_AfterTouch_:
data->instrument->controlChange( 128, value1 );
} // end of switch
data->haveMessage = false;
return;
}
// This tick() function handles sample computation and scheduling of
// control updates. It will be called automatically when the system
// needs a new buffer of audio samples.
int tick( void *outputBuffer, void *inputBuffer, unsigned int nBufferFrames,
double streamTime, RtAudioStreamStatus status, void *dataPointer )
{
TickData *data = (TickData *) dataPointer;
StkFloat *samples = (StkFloat *) outputBuffer;
int counter, nTicks = (int) nBufferFrames;
while ( nTicks > 0 && !data->done ) {
if ( !data->haveMessage ) {
data->messager.popMessage( data->message );
if ( data->message.type > 0 ) {
data->counter = (long) (data->message.time * Stk::sampleRate());
data->haveMessage = true;
}
else
data->counter = DELTA_CONTROL_TICKS;
}
counter = min( nTicks, data->counter );
data->counter -= counter;
for ( int i=0; i<counter; i++ ) {
*samples++ = data->instrument->tick();
nTicks--;
}
if ( nTicks == 0 ) break;
// Process control messages.
if ( data->haveMessage ) processMessage( data );
}
return 0;
}
int main( int argc, char *argv[] )
{
if ( argc != 2 ) usage();
// Set the global sample rate and rawwave path before creating class instances.
Stk::setSampleRate( 44100.0 );
Stk::setRawwavePath( "../../rawwaves/" );
TickData data;
RtAudio dac;
// Figure out how many bytes in an StkFloat and setup the RtAudio stream.
RtAudio::StreamParameters parameters;
parameters.deviceId = dac.getDefaultOutputDevice();
parameters.nChannels = 1;
RtAudioFormat format = ( sizeof(StkFloat) == 8 ) ? RTAUDIO_FLOAT64 : RTAUDIO_FLOAT32;
unsigned int bufferFrames = RT_BUFFER_SIZE;
if ( dac.openStream( ¶meters, NULL, format, (unsigned int)Stk::sampleRate(), &bufferFrames, &tick, (void *)&data ) ) {
std::cout << dac.getErrorText() << std::endl;
goto cleanup;
}
try {
// Define and load the BeeThree instrument
data.instrument = new BeeThree();
}
catch ( StkError & ) {
goto cleanup;
}
if ( data.messager.setScoreFile( argv[1] ) == false )
goto cleanup;
if ( dac.startStream() ) {
std::cout << dac.getErrorText() << std::endl;
goto cleanup;
}
// Block waiting until callback signals done.
while ( !data.done )
Stk::sleep( 100 );
// Shut down the output stream.
dac.closeStream();
cleanup:
delete data.instrument;
return 0;
}
|