File: StrictWeakOrdering.html

package info (click to toggle)
stl-manual 3.11-3
  • links: PTS
  • area: main
  • in suites: potato, slink
  • size: 3,760 kB
  • ctags: 3,857
  • sloc: cpp: 16,351; ansic: 1,340; makefile: 34; sh: 6
file content (245 lines) | stat: -rw-r--r-- 6,728 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
<HTML>
<!--
  -- Copyright (c) 1996,1997
  -- Silicon Graphics Computer Systems, Inc.
  --
  -- Permission to use, copy, modify, distribute and sell this software
  -- and its documentation for any purpose is hereby granted without fee,
  -- provided that the above copyright notice appears in all copies and
  -- that both that copyright notice and this permission notice appear
  -- in supporting documentation.  Silicon Graphics makes no
  -- representations about the suitability of this software for any
  -- purpose.  It is provided "as is" without express or implied warranty.
  --
  -- Copyright (c) 1994
  -- Hewlett-Packard Company
  --
  -- Permission to use, copy, modify, distribute and sell this software
  -- and its documentation for any purpose is hereby granted without fee,
  -- provided that the above copyright notice appears in all copies and
  -- that both that copyright notice and this permission notice appear
  -- in supporting documentation.  Hewlett-Packard Company makes no
  -- representations about the suitability of this software for any
  -- purpose.  It is provided "as is" without express or implied warranty.
  --
  -->
<Head>
<Title>Strict Weak Ordering</Title>
<!-- Generated by htmldoc -->
</HEAD>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b" 
	ALINK="#ff0000"> 
<IMG SRC="CorpID.gif" 
     ALT="Silicon Graphics, Inc." HEIGHT="43" WIDTH="151"> 
<!--end header-->
<BR Clear>
<H1>Strict Weak Ordering</H1>

<Table CellPadding=0 CellSpacing=0 width=100%>
<TR>
<TD Align=left><Img src = "functors.gif" Alt=""   WIDTH = "194"  HEIGHT = "38" ></TD>
<TD Align=right><Img src = "concept.gif" Alt=""   WIDTH = "194"  HEIGHT = "38" ></TD>
</TR>
<TR>
<TD Align=left VAlign=top><b>Category</b>: functors</TD>
<TD Align=right VAlign=top><b>Component type</b>: concept</TD>
</TR>
</Table>

<h3>Description</h3>
A Strict Weak Ordering is a <A href="BinaryPredicate.html">Binary Predicate</A> that compares two
objects, returning <tt>true</tt> if the first precedes the second.  This
predicate must satisfy the standard mathematical definition of
a <i>strict weak ordering</i>.  The precise requirements are stated
below, but what they roughly mean is that a Strict Weak Ordering has
to behave the way that &quot;less than&quot; behaves: if <tt>a</tt> is less than <tt>b</tt>
then <tt>b</tt> is not less than <tt>a</tt>, if <tt>a</tt> is less than <tt>b</tt> and <tt>b</tt> is less
than <tt>c</tt> then <tt>a</tt> is less than <tt>c</tt>, and so on.
<h3>Refinement of</h3>
<A href="BinaryPredicate.html">Binary Predicate</A>
<h3>Associated types</h3>
<Table border>
<TR>
<TD VAlign=top>
First argument type
</TD>
<TD VAlign=top>
The type of the Strict Weak Ordering's first argument.
</TD>
</TR>
<TR>
<TD VAlign=top>
Second argument type
</TD>
<TD VAlign=top>
The type of the Strict Weak Ordering's second argument.  The first
   argument type and second argument type must be the same.
</TD>
</TR>
<TR>
<TD VAlign=top>
Result type
</TD>
<TD VAlign=top>
The type returned when the Strict Weak Ordering is called.  The result type
   must be convertible to <tt>bool</tt>.  
</TD>
</tr>
</table>
<h3>Notation</h3>
<Table>
<TR>
<TD VAlign=top>
<tt>F</tt>
</TD>
<TD VAlign=top>
A type that is a model of Strict Weak Ordering
</TD>
</TR>
<TR>
<TD VAlign=top>
<tt>X</tt>
</TD>
<TD VAlign=top>
The type of Strict Weak Ordering's arguments.
</TD>
</TR>
<TR>
<TD VAlign=top>
<tt>f</tt>
</TD>
<TD VAlign=top>
Object of type <tt>F</tt>
</TD>
</TR>
<TR>
<TD VAlign=top>
<tt>x</tt>, <tt>y</tt>, <tt>z</tt>
</TD>
<TD VAlign=top>
Object of type <tt>X</tt>
</TD>
</tr>
</table>
<h3>Definitions</h3>
<UL>
<LI>
Two objects <tt>x</tt> and <tt>y</tt> are <i>equivalent</i> if both <tt>f(x, y)</tt> and
   <tt>f(y, x)</tt> are false.  Note that an object is always (by the
   irreflexivity invariant) equivalent to itself.
</UL>
<h3>Valid expressions</h3>
None, except for those defined in the <A href="BinaryPredicate.html">Binary Predicate</A> requirements.
<h3>Expression semantics</h3>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Precondition
</TH>
<TH>
Semantics
</TH>
<TH>
Postcondition
</TH>
</TR>
<TR>
<TD VAlign=top>
Function call
</TD>
<TD VAlign=top>
<tt>f(x, y)</tt>
</TD>
<TD VAlign=top>
The ordered pair <tt>(x,y)</tt> is in the domain of <tt>f</tt>
</TD>
<TD VAlign=top>
Returns <tt>true</tt> if <tt>x</tt> precedes <tt>y</tt>, and <tt>false</tt> otherwise
</TD>
<TD VAlign=top>
The result is either <tt>true</tt> or <tt>false</tt>
</TD>
</tr>
</table>
<h3>Complexity guarantees</h3>
<h3>Invariants</h3>
<Table border>
<TR>
<TD VAlign=top>
Irreflexivity
</TD>
<TD VAlign=top>
<tt>f(x, x)</tt> must be <tt>false</tt>.
</TD>
</TR>
<TR>
<TD VAlign=top>
Antisymmetry
</TD>
<TD VAlign=top>
<tt>f(x, y)</tt> implies <tt>!f(y, x)</tt>
</TD>
</TR>
<TR>
<TD VAlign=top>
Transitivity
</TD>
<TD VAlign=top>
<tt>f(x, y)</tt> and <tt>f(y, z)</tt> imply <tt>f(x, z)</tt>.
</TD>
</TR>
<TR>
<TD VAlign=top>
Transitivity of equivalence
</TD>
<TD VAlign=top>
Equivalence (as defined above) is transitive: if <tt>x</tt> is equivalent
   to <tt>y</tt> and <tt>y</tt> is equivalent to <tt>z</tt>, then <tt>x</tt> is equivalent to <tt>z</tt>.
   (This implies that equivalence does in fact satisfy the mathematical
   definition of an equivalence relation.) <A href="#1">[1]</A>
</TD>
</tr>
</table>
<h3>Models</h3>
<UL>
<LI>
<tt><A href="less.html">less</A>&lt;int&gt;</tt>
<LI>
<tt><A href="less.html">less</A>&lt;double&gt;</tt>
<LI>
<tt><A href="greater.html">greater</A>&lt;int&gt;</tt>
<LI>
<tt><A href="greater.html">greater</A>&lt;double&gt;</tt>
</UL>
<h3>Notes</h3>
<P><A name="1">[1]</A>
The first three axioms, irreflexivity, antisymmetry, and
transitivity, are the definition of a <i>partial ordering</i>; 
transitivity of equivalence is required by the definition of a
<i>strict weak ordering</i>.  A <i>total ordering</i> is one that satisfies
an even stronger condition: equivalence must be the same as equality.
<h3>See also</h3>
<A href="LessThanComparable.html">LessThan Comparable</A>, <tt><A href="less.html">less</A></tt>, <A href="BinaryPredicate.html">Binary Predicate</A>, 
<A href="functors.html">function objects</A>

<!--start footer--> 
<HR SIZE="6">
<A href="http://www.sgi.com/"><IMG SRC="surf.gif" HEIGHT="54" WIDTH="54" 
        ALT="[Silicon Surf]"></A>
<A HREF="index.html"><IMG SRC="stl_home.gif" 
        HEIGHT="54" WIDTH="54" ALT="[STL Home]"></A>
<BR>
<FONT SIZE="-2">
<A href="http://www.sgi.com/Misc/sgi_info.html" TARGET="_top">Copyright &copy; 
1996 Silicon Graphics, Inc.</A> All Rights Reserved.</FONT>
<FONT SIZE="-3"><a href="http://www.sgi.com/Misc/external.list.html" TARGET="_top">TrademarkInformation</A>
</FONT>
<P>
</BODY>
</HTML>