1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
<HTML>
<!--
-- Copyright (c) 1996,1997
-- Silicon Graphics Computer Systems, Inc.
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Silicon Graphics makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
--
-- Copyright (c) 1994
-- Hewlett-Packard Company
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Hewlett-Packard Company makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
--
-->
<Head>
<Title>Strict Weak Ordering</Title>
<!-- Generated by htmldoc -->
</HEAD>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="CorpID.gif"
ALT="Silicon Graphics, Inc." HEIGHT="43" WIDTH="151">
<!--end header-->
<BR Clear>
<H1>Strict Weak Ordering</H1>
<Table CellPadding=0 CellSpacing=0 width=100%>
<TR>
<TD Align=left><Img src = "functors.gif" Alt="" WIDTH = "194" HEIGHT = "38" ></TD>
<TD Align=right><Img src = "concept.gif" Alt="" WIDTH = "194" HEIGHT = "38" ></TD>
</TR>
<TR>
<TD Align=left VAlign=top><b>Category</b>: functors</TD>
<TD Align=right VAlign=top><b>Component type</b>: concept</TD>
</TR>
</Table>
<h3>Description</h3>
A Strict Weak Ordering is a <A href="BinaryPredicate.html">Binary Predicate</A> that compares two
objects, returning <tt>true</tt> if the first precedes the second. This
predicate must satisfy the standard mathematical definition of
a <i>strict weak ordering</i>. The precise requirements are stated
below, but what they roughly mean is that a Strict Weak Ordering has
to behave the way that "less than" behaves: if <tt>a</tt> is less than <tt>b</tt>
then <tt>b</tt> is not less than <tt>a</tt>, if <tt>a</tt> is less than <tt>b</tt> and <tt>b</tt> is less
than <tt>c</tt> then <tt>a</tt> is less than <tt>c</tt>, and so on.
<h3>Refinement of</h3>
<A href="BinaryPredicate.html">Binary Predicate</A>
<h3>Associated types</h3>
<Table border>
<TR>
<TD VAlign=top>
First argument type
</TD>
<TD VAlign=top>
The type of the Strict Weak Ordering's first argument.
</TD>
</TR>
<TR>
<TD VAlign=top>
Second argument type
</TD>
<TD VAlign=top>
The type of the Strict Weak Ordering's second argument. The first
argument type and second argument type must be the same.
</TD>
</TR>
<TR>
<TD VAlign=top>
Result type
</TD>
<TD VAlign=top>
The type returned when the Strict Weak Ordering is called. The result type
must be convertible to <tt>bool</tt>.
</TD>
</tr>
</table>
<h3>Notation</h3>
<Table>
<TR>
<TD VAlign=top>
<tt>F</tt>
</TD>
<TD VAlign=top>
A type that is a model of Strict Weak Ordering
</TD>
</TR>
<TR>
<TD VAlign=top>
<tt>X</tt>
</TD>
<TD VAlign=top>
The type of Strict Weak Ordering's arguments.
</TD>
</TR>
<TR>
<TD VAlign=top>
<tt>f</tt>
</TD>
<TD VAlign=top>
Object of type <tt>F</tt>
</TD>
</TR>
<TR>
<TD VAlign=top>
<tt>x</tt>, <tt>y</tt>, <tt>z</tt>
</TD>
<TD VAlign=top>
Object of type <tt>X</tt>
</TD>
</tr>
</table>
<h3>Definitions</h3>
<UL>
<LI>
Two objects <tt>x</tt> and <tt>y</tt> are <i>equivalent</i> if both <tt>f(x, y)</tt> and
<tt>f(y, x)</tt> are false. Note that an object is always (by the
irreflexivity invariant) equivalent to itself.
</UL>
<h3>Valid expressions</h3>
None, except for those defined in the <A href="BinaryPredicate.html">Binary Predicate</A> requirements.
<h3>Expression semantics</h3>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Precondition
</TH>
<TH>
Semantics
</TH>
<TH>
Postcondition
</TH>
</TR>
<TR>
<TD VAlign=top>
Function call
</TD>
<TD VAlign=top>
<tt>f(x, y)</tt>
</TD>
<TD VAlign=top>
The ordered pair <tt>(x,y)</tt> is in the domain of <tt>f</tt>
</TD>
<TD VAlign=top>
Returns <tt>true</tt> if <tt>x</tt> precedes <tt>y</tt>, and <tt>false</tt> otherwise
</TD>
<TD VAlign=top>
The result is either <tt>true</tt> or <tt>false</tt>
</TD>
</tr>
</table>
<h3>Complexity guarantees</h3>
<h3>Invariants</h3>
<Table border>
<TR>
<TD VAlign=top>
Irreflexivity
</TD>
<TD VAlign=top>
<tt>f(x, x)</tt> must be <tt>false</tt>.
</TD>
</TR>
<TR>
<TD VAlign=top>
Antisymmetry
</TD>
<TD VAlign=top>
<tt>f(x, y)</tt> implies <tt>!f(y, x)</tt>
</TD>
</TR>
<TR>
<TD VAlign=top>
Transitivity
</TD>
<TD VAlign=top>
<tt>f(x, y)</tt> and <tt>f(y, z)</tt> imply <tt>f(x, z)</tt>.
</TD>
</TR>
<TR>
<TD VAlign=top>
Transitivity of equivalence
</TD>
<TD VAlign=top>
Equivalence (as defined above) is transitive: if <tt>x</tt> is equivalent
to <tt>y</tt> and <tt>y</tt> is equivalent to <tt>z</tt>, then <tt>x</tt> is equivalent to <tt>z</tt>.
(This implies that equivalence does in fact satisfy the mathematical
definition of an equivalence relation.) <A href="#1">[1]</A>
</TD>
</tr>
</table>
<h3>Models</h3>
<UL>
<LI>
<tt><A href="less.html">less</A><int></tt>
<LI>
<tt><A href="less.html">less</A><double></tt>
<LI>
<tt><A href="greater.html">greater</A><int></tt>
<LI>
<tt><A href="greater.html">greater</A><double></tt>
</UL>
<h3>Notes</h3>
<P><A name="1">[1]</A>
The first three axioms, irreflexivity, antisymmetry, and
transitivity, are the definition of a <i>partial ordering</i>;
transitivity of equivalence is required by the definition of a
<i>strict weak ordering</i>. A <i>total ordering</i> is one that satisfies
an even stronger condition: equivalence must be the same as equality.
<h3>See also</h3>
<A href="LessThanComparable.html">LessThan Comparable</A>, <tt><A href="less.html">less</A></tt>, <A href="BinaryPredicate.html">Binary Predicate</A>,
<A href="functors.html">function objects</A>
<!--start footer-->
<HR SIZE="6">
<A href="http://www.sgi.com/"><IMG SRC="surf.gif" HEIGHT="54" WIDTH="54"
ALT="[Silicon Surf]"></A>
<A HREF="index.html"><IMG SRC="stl_home.gif"
HEIGHT="54" WIDTH="54" ALT="[STL Home]"></A>
<BR>
<FONT SIZE="-2">
<A href="http://www.sgi.com/Misc/sgi_info.html" TARGET="_top">Copyright ©
1996 Silicon Graphics, Inc.</A> All Rights Reserved.</FONT>
<FONT SIZE="-3"><a href="http://www.sgi.com/Misc/external.list.html" TARGET="_top">TrademarkInformation</A>
</FONT>
<P>
</BODY>
</HTML>
|