File: stl_tree.h

package info (click to toggle)
stl-manual 3.30-13.1
  • links: PTS, VCS
  • area: main
  • in suites: buster, stretch
  • size: 5,440 kB
  • ctags: 4,550
  • sloc: cpp: 17,845; ansic: 2,842; makefile: 41
file content (1366 lines) | stat: -rw-r--r-- 44,695 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
/*
 *
 * Copyright (c) 1996,1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 */

/* NOTE: This is an internal header file, included by other STL headers.
 *   You should not attempt to use it directly.
 */

#ifndef __SGI_STL_INTERNAL_TREE_H
#define __SGI_STL_INTERNAL_TREE_H

/*

Red-black tree class, designed for use in implementing STL
associative containers (set, multiset, map, and multimap). The
insertion and deletion algorithms are based on those in Cormen,
Leiserson, and Rivest, Introduction to Algorithms (MIT Press, 1990),
except that

(1) the header cell is maintained with links not only to the root
but also to the leftmost node of the tree, to enable constant time
begin(), and to the rightmost node of the tree, to enable linear time
performance when used with the generic set algorithms (set_union,
etc.);

(2) when a node being deleted has two children its successor node is
relinked into its place, rather than copied, so that the only
iterators invalidated are those referring to the deleted node.

*/

#include <stl_algobase.h>
#include <stl_alloc.h>
#include <stl_construct.h>
#include <stl_function.h>

__STL_BEGIN_NAMESPACE 

#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1375
#endif

typedef bool _Rb_tree_Color_type;
const _Rb_tree_Color_type _S_rb_tree_red = false;
const _Rb_tree_Color_type _S_rb_tree_black = true;

struct _Rb_tree_node_base
{
  typedef _Rb_tree_Color_type _Color_type;
  typedef _Rb_tree_node_base* _Base_ptr;

  _Color_type _M_color; 
  _Base_ptr _M_parent;
  _Base_ptr _M_left;
  _Base_ptr _M_right;

  static _Base_ptr _S_minimum(_Base_ptr __x)
  {
    while (__x->_M_left != 0) __x = __x->_M_left;
    return __x;
  }

  static _Base_ptr _S_maximum(_Base_ptr __x)
  {
    while (__x->_M_right != 0) __x = __x->_M_right;
    return __x;
  }
};

template <class _Value>
struct _Rb_tree_node : public _Rb_tree_node_base
{
  typedef _Rb_tree_node<_Value>* _Link_type;
  _Value _M_value_field;
};


struct _Rb_tree_base_iterator
{
  typedef _Rb_tree_node_base::_Base_ptr _Base_ptr;
  typedef bidirectional_iterator_tag iterator_category;
  typedef ptrdiff_t difference_type;
  _Base_ptr _M_node;

  void _M_increment()
  {
    if (_M_node->_M_right != 0) {
      _M_node = _M_node->_M_right;
      while (_M_node->_M_left != 0)
        _M_node = _M_node->_M_left;
    }
    else {
      _Base_ptr __y = _M_node->_M_parent;
      while (_M_node == __y->_M_right) {
        _M_node = __y;
        __y = __y->_M_parent;
      }
      if (_M_node->_M_right != __y)
        _M_node = __y;
    }
  }

  void _M_decrement()
  {
    if (_M_node->_M_color == _S_rb_tree_red &&
        _M_node->_M_parent->_M_parent == _M_node)
      _M_node = _M_node->_M_right;
    else if (_M_node->_M_left != 0) {
      _Base_ptr __y = _M_node->_M_left;
      while (__y->_M_right != 0)
        __y = __y->_M_right;
      _M_node = __y;
    }
    else {
      _Base_ptr __y = _M_node->_M_parent;
      while (_M_node == __y->_M_left) {
        _M_node = __y;
        __y = __y->_M_parent;
      }
      _M_node = __y;
    }
  }
};

template <class _Value, class _Ref, class _Ptr>
struct _Rb_tree_iterator : public _Rb_tree_base_iterator
{
  typedef _Value value_type;
  typedef _Ref reference;
  typedef _Ptr pointer;
  typedef _Rb_tree_iterator<_Value, _Value&, _Value*>             
    iterator;
  typedef _Rb_tree_iterator<_Value, const _Value&, const _Value*> 
    const_iterator;
  typedef _Rb_tree_iterator<_Value, _Ref, _Ptr>                   
    _Self;
  typedef _Rb_tree_node<_Value>* _Link_type;

  _Rb_tree_iterator() {}
  _Rb_tree_iterator(_Link_type __x) { _M_node = __x; }
  _Rb_tree_iterator(const iterator& __it) { _M_node = __it._M_node; }

  reference operator*() const { return _Link_type(_M_node)->_M_value_field; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
  pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */

  _Self& operator++() { _M_increment(); return *this; }
  _Self operator++(int) {
    _Self __tmp = *this;
    _M_increment();
    return __tmp;
  }
    
  _Self& operator--() { _M_decrement(); return *this; }
  _Self operator--(int) {
    _Self __tmp = *this;
    _M_decrement();
    return __tmp;
  }
};

inline bool operator==(const _Rb_tree_base_iterator& __x,
                       const _Rb_tree_base_iterator& __y) {
  return __x._M_node == __y._M_node;
}

inline bool operator!=(const _Rb_tree_base_iterator& __x,
                       const _Rb_tree_base_iterator& __y) {
  return __x._M_node != __y._M_node;
}

#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION

inline bidirectional_iterator_tag
iterator_category(const _Rb_tree_base_iterator&) {
  return bidirectional_iterator_tag();
}

inline _Rb_tree_base_iterator::difference_type*
distance_type(const _Rb_tree_base_iterator&) {
  return (_Rb_tree_base_iterator::difference_type*) 0;
}

template <class _Value, class _Ref, class _Ptr>
inline _Value* value_type(const _Rb_tree_iterator<_Value, _Ref, _Ptr>&) {
  return (_Value*) 0;
}

#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */

inline void 
_Rb_tree_rotate_left(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
  _Rb_tree_node_base* __y = __x->_M_right;
  __x->_M_right = __y->_M_left;
  if (__y->_M_left !=0)
    __y->_M_left->_M_parent = __x;
  __y->_M_parent = __x->_M_parent;

  if (__x == __root)
    __root = __y;
  else if (__x == __x->_M_parent->_M_left)
    __x->_M_parent->_M_left = __y;
  else
    __x->_M_parent->_M_right = __y;
  __y->_M_left = __x;
  __x->_M_parent = __y;
}

inline void 
_Rb_tree_rotate_right(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
  _Rb_tree_node_base* __y = __x->_M_left;
  __x->_M_left = __y->_M_right;
  if (__y->_M_right != 0)
    __y->_M_right->_M_parent = __x;
  __y->_M_parent = __x->_M_parent;

  if (__x == __root)
    __root = __y;
  else if (__x == __x->_M_parent->_M_right)
    __x->_M_parent->_M_right = __y;
  else
    __x->_M_parent->_M_left = __y;
  __y->_M_right = __x;
  __x->_M_parent = __y;
}

inline void 
_Rb_tree_rebalance(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
  __x->_M_color = _S_rb_tree_red;
  while (__x != __root && __x->_M_parent->_M_color == _S_rb_tree_red) {
    if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left) {
      _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right;
      if (__y && __y->_M_color == _S_rb_tree_red) {
        __x->_M_parent->_M_color = _S_rb_tree_black;
        __y->_M_color = _S_rb_tree_black;
        __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
        __x = __x->_M_parent->_M_parent;
      }
      else {
        if (__x == __x->_M_parent->_M_right) {
          __x = __x->_M_parent;
          _Rb_tree_rotate_left(__x, __root);
        }
        __x->_M_parent->_M_color = _S_rb_tree_black;
        __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
        _Rb_tree_rotate_right(__x->_M_parent->_M_parent, __root);
      }
    }
    else {
      _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left;
      if (__y && __y->_M_color == _S_rb_tree_red) {
        __x->_M_parent->_M_color = _S_rb_tree_black;
        __y->_M_color = _S_rb_tree_black;
        __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
        __x = __x->_M_parent->_M_parent;
      }
      else {
        if (__x == __x->_M_parent->_M_left) {
          __x = __x->_M_parent;
          _Rb_tree_rotate_right(__x, __root);
        }
        __x->_M_parent->_M_color = _S_rb_tree_black;
        __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
        _Rb_tree_rotate_left(__x->_M_parent->_M_parent, __root);
      }
    }
  }
  __root->_M_color = _S_rb_tree_black;
}

inline _Rb_tree_node_base*
_Rb_tree_rebalance_for_erase(_Rb_tree_node_base* __z,
                             _Rb_tree_node_base*& __root,
                             _Rb_tree_node_base*& __leftmost,
                             _Rb_tree_node_base*& __rightmost)
{
  _Rb_tree_node_base* __y = __z;
  _Rb_tree_node_base* __x = 0;
  _Rb_tree_node_base* __x_parent = 0;
  if (__y->_M_left == 0)     // __z has at most one non-null child. y == z.
    __x = __y->_M_right;     // __x might be null.
  else
    if (__y->_M_right == 0)  // __z has exactly one non-null child. y == z.
      __x = __y->_M_left;    // __x is not null.
    else {                   // __z has two non-null children.  Set __y to
      __y = __y->_M_right;   //   __z's successor.  __x might be null.
      while (__y->_M_left != 0)
        __y = __y->_M_left;
      __x = __y->_M_right;
    }
  if (__y != __z) {          // relink y in place of z.  y is z's successor
    __z->_M_left->_M_parent = __y; 
    __y->_M_left = __z->_M_left;
    if (__y != __z->_M_right) {
      __x_parent = __y->_M_parent;
      if (__x) __x->_M_parent = __y->_M_parent;
      __y->_M_parent->_M_left = __x;      // __y must be a child of _M_left
      __y->_M_right = __z->_M_right;
      __z->_M_right->_M_parent = __y;
    }
    else
      __x_parent = __y;  
    if (__root == __z)
      __root = __y;
    else if (__z->_M_parent->_M_left == __z)
      __z->_M_parent->_M_left = __y;
    else 
      __z->_M_parent->_M_right = __y;
    __y->_M_parent = __z->_M_parent;
    __STD::swap(__y->_M_color, __z->_M_color);
    __y = __z;
    // __y now points to node to be actually deleted
  }
  else {                        // __y == __z
    __x_parent = __y->_M_parent;
    if (__x) __x->_M_parent = __y->_M_parent;   
    if (__root == __z)
      __root = __x;
    else 
      if (__z->_M_parent->_M_left == __z)
        __z->_M_parent->_M_left = __x;
      else
        __z->_M_parent->_M_right = __x;
    if (__leftmost == __z) 
      if (__z->_M_right == 0)        // __z->_M_left must be null also
        __leftmost = __z->_M_parent;
    // makes __leftmost == _M_header if __z == __root
      else
        __leftmost = _Rb_tree_node_base::_S_minimum(__x);
    if (__rightmost == __z)  
      if (__z->_M_left == 0)         // __z->_M_right must be null also
        __rightmost = __z->_M_parent;  
    // makes __rightmost == _M_header if __z == __root
      else                      // __x == __z->_M_left
        __rightmost = _Rb_tree_node_base::_S_maximum(__x);
  }
  if (__y->_M_color != _S_rb_tree_red) { 
    while (__x != __root && (__x == 0 || __x->_M_color == _S_rb_tree_black))
      if (__x == __x_parent->_M_left) {
        _Rb_tree_node_base* __w = __x_parent->_M_right;
        if (__w->_M_color == _S_rb_tree_red) {
          __w->_M_color = _S_rb_tree_black;
          __x_parent->_M_color = _S_rb_tree_red;
          _Rb_tree_rotate_left(__x_parent, __root);
          __w = __x_parent->_M_right;
        }
        if ((__w->_M_left == 0 || 
             __w->_M_left->_M_color == _S_rb_tree_black) &&
            (__w->_M_right == 0 || 
             __w->_M_right->_M_color == _S_rb_tree_black)) {
          __w->_M_color = _S_rb_tree_red;
          __x = __x_parent;
          __x_parent = __x_parent->_M_parent;
        } else {
          if (__w->_M_right == 0 || 
              __w->_M_right->_M_color == _S_rb_tree_black) {
            if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
            __w->_M_color = _S_rb_tree_red;
            _Rb_tree_rotate_right(__w, __root);
            __w = __x_parent->_M_right;
          }
          __w->_M_color = __x_parent->_M_color;
          __x_parent->_M_color = _S_rb_tree_black;
          if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
          _Rb_tree_rotate_left(__x_parent, __root);
          break;
        }
      } else {                  // same as above, with _M_right <-> _M_left.
        _Rb_tree_node_base* __w = __x_parent->_M_left;
        if (__w->_M_color == _S_rb_tree_red) {
          __w->_M_color = _S_rb_tree_black;
          __x_parent->_M_color = _S_rb_tree_red;
          _Rb_tree_rotate_right(__x_parent, __root);
          __w = __x_parent->_M_left;
        }
        if ((__w->_M_right == 0 || 
             __w->_M_right->_M_color == _S_rb_tree_black) &&
            (__w->_M_left == 0 || 
             __w->_M_left->_M_color == _S_rb_tree_black)) {
          __w->_M_color = _S_rb_tree_red;
          __x = __x_parent;
          __x_parent = __x_parent->_M_parent;
        } else {
          if (__w->_M_left == 0 || 
              __w->_M_left->_M_color == _S_rb_tree_black) {
            if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
            __w->_M_color = _S_rb_tree_red;
            _Rb_tree_rotate_left(__w, __root);
            __w = __x_parent->_M_left;
          }
          __w->_M_color = __x_parent->_M_color;
          __x_parent->_M_color = _S_rb_tree_black;
          if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
          _Rb_tree_rotate_right(__x_parent, __root);
          break;
        }
      }
    if (__x) __x->_M_color = _S_rb_tree_black;
  }
  return __y;
}

// Base class to encapsulate the differences between old SGI-style
// allocators and standard-conforming allocators.  In order to avoid
// having an empty base class, we arbitrarily move one of rb_tree's
// data members into the base class.

#ifdef __STL_USE_STD_ALLOCATORS

// _Base for general standard-conforming allocators.
template <class _Tp, class _Alloc, bool _S_instanceless>
class _Rb_tree_alloc_base {
public:
  typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
  allocator_type get_allocator() const { return _M_node_allocator; }

  _Rb_tree_alloc_base(const allocator_type& __a)
    : _M_node_allocator(__a), _M_header(0) {}

protected:
  typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::allocator_type
           _M_node_allocator;
  _Rb_tree_node<_Tp>* _M_header;

  _Rb_tree_node<_Tp>* _M_get_node() 
    { return _M_node_allocator.allocate(1); }
  void _M_put_node(_Rb_tree_node<_Tp>* __p) 
    { _M_node_allocator.deallocate(__p, 1); }
};

// Specialization for instanceless allocators.
template <class _Tp, class _Alloc>
class _Rb_tree_alloc_base<_Tp, _Alloc, true> {
public:
  typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
  allocator_type get_allocator() const { return allocator_type(); }

  _Rb_tree_alloc_base(const allocator_type&) : _M_header(0) {}

protected:
  _Rb_tree_node<_Tp>* _M_header;

  typedef typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::_Alloc_type
          _Alloc_type;

  _Rb_tree_node<_Tp>* _M_get_node()
    { return _Alloc_type::allocate(1); }
  void _M_put_node(_Rb_tree_node<_Tp>* __p)
    { _Alloc_type::deallocate(__p, 1); }
};

template <class _Tp, class _Alloc>
struct _Rb_tree_base
  : public _Rb_tree_alloc_base<_Tp, _Alloc,
                               _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
  typedef _Rb_tree_alloc_base<_Tp, _Alloc,
                              _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
          _Base;
  typedef typename _Base::allocator_type allocator_type;

  _Rb_tree_base(const allocator_type& __a) 
    : _Base(__a) { _M_header = _M_get_node(); }
  ~_Rb_tree_base() { _M_put_node(_M_header); }

};

#else /* __STL_USE_STD_ALLOCATORS */

template <class _Tp, class _Alloc>
struct _Rb_tree_base
{
  typedef _Alloc allocator_type;
  allocator_type get_allocator() const { return allocator_type(); }

  _Rb_tree_base(const allocator_type&) 
    : _M_header(0) { _M_header = _M_get_node(); }
  ~_Rb_tree_base() { _M_put_node(_M_header); }

protected:
  _Rb_tree_node<_Tp>* _M_header;

  typedef simple_alloc<_Rb_tree_node<_Tp>, _Alloc> _Alloc_type;

  _Rb_tree_node<_Tp>* _M_get_node()
    { return _Alloc_type::allocate(1); }
  void _M_put_node(_Rb_tree_node<_Tp>* __p)
    { _Alloc_type::deallocate(__p, 1); }
};

#endif /* __STL_USE_STD_ALLOCATORS */

template <class _Key, class _Value, class _KeyOfValue, class _Compare,
          class _Alloc = __STL_DEFAULT_ALLOCATOR(_Value) >
class _Rb_tree : protected _Rb_tree_base<_Value, _Alloc> {
  typedef _Rb_tree_base<_Value, _Alloc> _Base;
protected:
  typedef _Rb_tree_node_base* _Base_ptr;
  typedef _Rb_tree_node<_Value> _Rb_tree_node;
  typedef _Rb_tree_Color_type _Color_type;
public:
  typedef _Key key_type;
  typedef _Value value_type;
  typedef value_type* pointer;
  typedef const value_type* const_pointer;
  typedef value_type& reference;
  typedef const value_type& const_reference;
  typedef _Rb_tree_node* _Link_type;
  typedef size_t size_type;
  typedef ptrdiff_t difference_type;

  typedef typename _Base::allocator_type allocator_type;
  allocator_type get_allocator() const { return _Base::get_allocator(); }

protected:
#ifdef __STL_USE_NAMESPACES
  using _Base::_M_get_node;
  using _Base::_M_put_node;
  using _Base::_M_header;
#endif /* __STL_USE_NAMESPACES */

protected:

  _Link_type _M_create_node(const value_type& __x)
  {
    _Link_type __tmp = _M_get_node();
    __STL_TRY {
      construct(&__tmp->_M_value_field, __x);
    }
    __STL_UNWIND(_M_put_node(__tmp));
    return __tmp;
  }

  _Link_type _M_clone_node(_Link_type __x)
  {
    _Link_type __tmp = _M_create_node(__x->_M_value_field);
    __tmp->_M_color = __x->_M_color;
    __tmp->_M_left = 0;
    __tmp->_M_right = 0;
    return __tmp;
  }

  void destroy_node(_Link_type __p)
  {
    destroy(&__p->_M_value_field);
    _M_put_node(__p);
  }

protected:
  size_type _M_node_count; // keeps track of size of tree
  _Compare _M_key_compare;

  _Link_type& _M_root() const 
    { return (_Link_type&) _M_header->_M_parent; }
  _Link_type& _M_leftmost() const 
    { return (_Link_type&) _M_header->_M_left; }
  _Link_type& _M_rightmost() const 
    { return (_Link_type&) _M_header->_M_right; }

  static _Link_type& _S_left(_Link_type __x)
    { return (_Link_type&)(__x->_M_left); }
  static _Link_type& _S_right(_Link_type __x)
    { return (_Link_type&)(__x->_M_right); }
  static _Link_type& _S_parent(_Link_type __x)
    { return (_Link_type&)(__x->_M_parent); }
  static reference _S_value(_Link_type __x)
    { return __x->_M_value_field; }
  static const _Key& _S_key(_Link_type __x)
    { return _KeyOfValue()(_S_value(__x)); }
  static _Color_type& _S_color(_Link_type __x)
    { return (_Color_type&)(__x->_M_color); }

  static _Link_type& _S_left(_Base_ptr __x)
    { return (_Link_type&)(__x->_M_left); }
  static _Link_type& _S_right(_Base_ptr __x)
    { return (_Link_type&)(__x->_M_right); }
  static _Link_type& _S_parent(_Base_ptr __x)
    { return (_Link_type&)(__x->_M_parent); }
  static reference _S_value(_Base_ptr __x)
    { return ((_Link_type)__x)->_M_value_field; }
  static const _Key& _S_key(_Base_ptr __x)
    { return _KeyOfValue()(_S_value(_Link_type(__x)));} 
  static _Color_type& _S_color(_Base_ptr __x)
    { return (_Color_type&)(_Link_type(__x)->_M_color); }

  static _Link_type _S_minimum(_Link_type __x) 
    { return (_Link_type)  _Rb_tree_node_base::_S_minimum(__x); }

  static _Link_type _S_maximum(_Link_type __x)
    { return (_Link_type) _Rb_tree_node_base::_S_maximum(__x); }

public:
  typedef _Rb_tree_iterator<value_type, reference, pointer> iterator;
  typedef _Rb_tree_iterator<value_type, const_reference, const_pointer> 
          const_iterator;

#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
  typedef reverse_iterator<const_iterator> const_reverse_iterator;
  typedef reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
  typedef reverse_bidirectional_iterator<iterator, value_type, reference,
                                         difference_type>
          reverse_iterator; 
  typedef reverse_bidirectional_iterator<const_iterator, value_type,
                                         const_reference, difference_type>
          const_reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ 

private:
  iterator _M_insert(_Base_ptr __x, _Base_ptr __y, const value_type& __v);
  _Link_type _M_copy(_Link_type __x, _Link_type __p);
  void _M_erase(_Link_type __x);

public:
                                // allocation/deallocation
  _Rb_tree()
    : _Base(allocator_type()), _M_node_count(0), _M_key_compare()
    { _M_empty_initialize(); }

  _Rb_tree(const _Compare& __comp)
    : _Base(allocator_type()), _M_node_count(0), _M_key_compare(__comp) 
    { _M_empty_initialize(); }

  _Rb_tree(const _Compare& __comp, const allocator_type& __a)
    : _Base(__a), _M_node_count(0), _M_key_compare(__comp) 
    { _M_empty_initialize(); }

  _Rb_tree(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x) 
    : _Base(__x.get_allocator()),
      _M_node_count(0), _M_key_compare(__x._M_key_compare)
  { 
    if (__x._M_root() == 0)
      _M_empty_initialize();
    else {
      _S_color(_M_header) = _S_rb_tree_red;
      _M_root() = _M_copy(__x._M_root(), _M_header);
      _M_leftmost() = _S_minimum(_M_root());
      _M_rightmost() = _S_maximum(_M_root());
    }
    _M_node_count = __x._M_node_count;
  }
  ~_Rb_tree() { clear(); }
  _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& 
  operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x);

private:
  void _M_empty_initialize() {
    _S_color(_M_header) = _S_rb_tree_red; // used to distinguish header from 
                                          // __root, in iterator.operator++
    _M_root() = 0;
    _M_leftmost() = _M_header;
    _M_rightmost() = _M_header;
  }

public:    
                                // accessors:
  _Compare key_comp() const { return _M_key_compare; }
  iterator begin() { return _M_leftmost(); }
  const_iterator begin() const { return _M_leftmost(); }
  iterator end() { return _M_header; }
  const_iterator end() const { return _M_header; }
  reverse_iterator rbegin() { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const { 
    return const_reverse_iterator(end()); 
  }
  reverse_iterator rend() { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const { 
    return const_reverse_iterator(begin());
  } 
  bool empty() const { return _M_node_count == 0; }
  size_type size() const { return _M_node_count; }
  size_type max_size() const { return size_type(-1); }

  void swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __t) {
    __STD::swap(_M_header, __t._M_header);
    __STD::swap(_M_node_count, __t._M_node_count);
    __STD::swap(_M_key_compare, __t._M_key_compare);
  }
    
public:
                                // insert/erase
  pair<iterator,bool> insert_unique(const value_type& __x);
  iterator insert_equal(const value_type& __x);

  iterator insert_unique(iterator __position, const value_type& __x);
  iterator insert_equal(iterator __position, const value_type& __x);

#ifdef __STL_MEMBER_TEMPLATES  
  template <class _InputIterator>
  void insert_unique(_InputIterator __first, _InputIterator __last);
  template <class _InputIterator>
  void insert_equal(_InputIterator __first, _InputIterator __last);
#else /* __STL_MEMBER_TEMPLATES */
  void insert_unique(const_iterator __first, const_iterator __last);
  void insert_unique(const value_type* __first, const value_type* __last);
  void insert_equal(const_iterator __first, const_iterator __last);
  void insert_equal(const value_type* __first, const value_type* __last);
#endif /* __STL_MEMBER_TEMPLATES */

  void erase(iterator __position);
  size_type erase(const key_type& __x);
  void erase(iterator __first, iterator __last);
  void erase(const key_type* __first, const key_type* __last);
  void clear() {
    if (_M_node_count != 0) {
      _M_erase(_M_root());
      _M_leftmost() = _M_header;
      _M_root() = 0;
      _M_rightmost() = _M_header;
      _M_node_count = 0;
    }
  }      

public:
                                // set operations:
  iterator find(const key_type& __x);
  const_iterator find(const key_type& __x) const;
  size_type count(const key_type& __x) const;
  iterator lower_bound(const key_type& __x);
  const_iterator lower_bound(const key_type& __x) const;
  iterator upper_bound(const key_type& __x);
  const_iterator upper_bound(const key_type& __x) const;
  pair<iterator,iterator> equal_range(const key_type& __x);
  pair<const_iterator, const_iterator> equal_range(const key_type& __x) const;

public:
                                // Debugging.
  bool __rb_verify() const;
};

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
inline bool 
operator==(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x, 
           const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
  return __x.size() == __y.size() &&
         equal(__x.begin(), __x.end(), __y.begin());
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
inline bool 
operator<(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x, 
          const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
  return lexicographical_compare(__x.begin(), __x.end(), 
                                 __y.begin(), __y.end());
}

#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
inline bool 
operator!=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x, 
           const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
  return !(__x == __y);
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
inline bool 
operator>(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x, 
          const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
  return __y < __x;
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
inline bool 
operator<=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x, 
           const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
  return !(__y < __x);
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
inline bool 
operator>=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x, 
           const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
  return !(__x < __y);
}


template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
inline void 
swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x, 
     _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
  __x.swap(__y);
}

#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */


template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& 
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
  ::operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x)
{
  if (this != &__x) {
                                // Note that _Key may be a constant type.
    clear();
    _M_node_count = 0;
    _M_key_compare = __x._M_key_compare;        
    if (__x._M_root() == 0) {
      _M_root() = 0;
      _M_leftmost() = _M_header;
      _M_rightmost() = _M_header;
    }
    else {
      _M_root() = _M_copy(__x._M_root(), _M_header);
      _M_leftmost() = _S_minimum(_M_root());
      _M_rightmost() = _S_maximum(_M_root());
      _M_node_count = __x._M_node_count;
    }
  }
  return *this;
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
  ::_M_insert(_Base_ptr __x_, _Base_ptr __y_, const _Value& __v)
{
  _Link_type __x = (_Link_type) __x_;
  _Link_type __y = (_Link_type) __y_;
  _Link_type __z;

  if (__y == _M_header || __x != 0 || 
      _M_key_compare(_KeyOfValue()(__v), _S_key(__y))) {
    __z = _M_create_node(__v);
    _S_left(__y) = __z;               // also makes _M_leftmost() = __z 
                                      //    when __y == _M_header
    if (__y == _M_header) {
      _M_root() = __z;
      _M_rightmost() = __z;
    }
    else if (__y == _M_leftmost())
      _M_leftmost() = __z;   // maintain _M_leftmost() pointing to min node
  }
  else {
    __z = _M_create_node(__v);
    _S_right(__y) = __z;
    if (__y == _M_rightmost())
      _M_rightmost() = __z;  // maintain _M_rightmost() pointing to max node
  }
  _S_parent(__z) = __y;
  _S_left(__z) = 0;
  _S_right(__z) = 0;
  _Rb_tree_rebalance(__z, _M_header->_M_parent);
  ++_M_node_count;
  return iterator(__z);
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
  ::insert_equal(const _Value& __v)
{
  _Link_type __y = _M_header;
  _Link_type __x = _M_root();
  while (__x != 0) {
    __y = __x;
    __x = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ? 
            _S_left(__x) : _S_right(__x);
  }
  return _M_insert(__x, __y, __v);
}


template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
pair<typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator, 
     bool>
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
  ::insert_unique(const _Value& __v)
{
  _Link_type __y = _M_header;
  _Link_type __x = _M_root();
  bool __comp = true;
  while (__x != 0) {
    __y = __x;
    __comp = _M_key_compare(_KeyOfValue()(__v), _S_key(__x));
    __x = __comp ? _S_left(__x) : _S_right(__x);
  }
  iterator __j = iterator(__y);   
  if (__comp)
    if (__j == begin())     
      return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
    else
      --__j;
  if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v)))
    return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
  return pair<iterator,bool>(__j, false);
}


template <class _Key, class _Val, class _KeyOfValue, 
          class _Compare, class _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator 
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>
  ::insert_unique(iterator __position, const _Val& __v)
{
  if (__position._M_node == _M_header->_M_left) { // begin()
    if (size() > 0 && 
        _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node)))
      return _M_insert(__position._M_node, __position._M_node, __v);
    // first argument just needs to be non-null 
    else
      return insert_unique(__v).first;
  } else if (__position._M_node == _M_header) { // end()
    if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__v)))
      return _M_insert(0, _M_rightmost(), __v);
    else
      return insert_unique(__v).first;
  } else {
    iterator __before = __position;
    --__before;
    if (_M_key_compare(_S_key(__before._M_node), _KeyOfValue()(__v)) 
        && _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node))) {
      if (_S_right(__before._M_node) == 0)
        return _M_insert(0, __before._M_node, __v); 
      else
        return _M_insert(__position._M_node, __position._M_node, __v);
    // first argument just needs to be non-null 
    } else
      return insert_unique(__v).first;
  }
}

template <class _Key, class _Val, class _KeyOfValue, 
          class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator 
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>
  ::insert_equal(iterator __position, const _Val& __v)
{
  if (__position._M_node == _M_header->_M_left) { // begin()
    if (size() > 0 && 
        !_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v)))
      return _M_insert(__position._M_node, __position._M_node, __v);
    // first argument just needs to be non-null 
    else
      return insert_equal(__v);
  } else if (__position._M_node == _M_header) {// end()
    if (!_M_key_compare(_KeyOfValue()(__v), _S_key(_M_rightmost())))
      return _M_insert(0, _M_rightmost(), __v);
    else
      return insert_equal(__v);
  } else {
    iterator __before = __position;
    --__before;
    if (!_M_key_compare(_KeyOfValue()(__v), _S_key(__before._M_node))
        && !_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v))) {
      if (_S_right(__before._M_node) == 0)
        return _M_insert(0, __before._M_node, __v); 
      else
        return _M_insert(__position._M_node, __position._M_node, __v);
    // first argument just needs to be non-null 
    } else
      return insert_equal(__v);
  }
}

#ifdef __STL_MEMBER_TEMPLATES  

template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
  template<class _II>
void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
  ::insert_equal(_II __first, _II __last)
{
  for ( ; __first != __last; ++__first)
    insert_equal(*__first);
}

template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc> 
  template<class _II>
void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
  ::insert_unique(_II __first, _II __last) {
  for ( ; __first != __last; ++__first)
    insert_unique(*__first);
}

#else /* __STL_MEMBER_TEMPLATES */

template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
void
_Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
  ::insert_equal(const _Val* __first, const _Val* __last)
{
  for ( ; __first != __last; ++__first)
    insert_equal(*__first);
}

template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
void
_Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
  ::insert_equal(const_iterator __first, const_iterator __last)
{
  for ( ; __first != __last; ++__first)
    insert_equal(*__first);
}

template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
void 
_Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
  ::insert_unique(const _Val* __first, const _Val* __last)
{
  for ( ; __first != __last; ++__first)
    insert_unique(*__first);
}

template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
  ::insert_unique(const_iterator __first, const_iterator __last)
{
  for ( ; __first != __last; ++__first)
    insert_unique(*__first);
}

#endif /* __STL_MEMBER_TEMPLATES */
         
template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
inline void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
  ::erase(iterator __position)
{
  _Link_type __y = 
    (_Link_type) _Rb_tree_rebalance_for_erase(__position._M_node,
                                              _M_header->_M_parent,
                                              _M_header->_M_left,
                                              _M_header->_M_right);
  destroy_node(__y);
  --_M_node_count;
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::size_type 
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::erase(const _Key& __x)
{
  pair<iterator,iterator> __p = equal_range(__x);
  size_type __n = 0;
  distance(__p.first, __p.second, __n);
  erase(__p.first, __p.second);
  return __n;
}

template <class _Key, class _Val, class _KoV, class _Compare, class _Alloc>
typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::_Link_type 
_Rb_tree<_Key,_Val,_KoV,_Compare,_Alloc>
  ::_M_copy(_Link_type __x, _Link_type __p)
{
                        // structural copy.  __x and __p must be non-null.
  _Link_type __top = _M_clone_node(__x);
  __top->_M_parent = __p;
 
  __STL_TRY {
    if (__x->_M_right)
      __top->_M_right = _M_copy(_S_right(__x), __top);
    __p = __top;
    __x = _S_left(__x);

    while (__x != 0) {
      _Link_type __y = _M_clone_node(__x);
      __p->_M_left = __y;
      __y->_M_parent = __p;
      if (__x->_M_right)
        __y->_M_right = _M_copy(_S_right(__x), __y);
      __p = __y;
      __x = _S_left(__x);
    }
  }
  __STL_UNWIND(_M_erase(__top));

  return __top;
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
  ::_M_erase(_Link_type __x)
{
                                // erase without rebalancing
  while (__x != 0) {
    _M_erase(_S_right(__x));
    _Link_type __y = _S_left(__x);
    destroy_node(__x);
    __x = __y;
  }
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
  ::erase(iterator __first, iterator __last)
{
  if (__first == begin() && __last == end())
    clear();
  else
    while (__first != __last) erase(__first++);
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
  ::erase(const _Key* __first, const _Key* __last) 
{
  while (__first != __last) erase(*__first++);
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator 
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k)
{
  _Link_type __y = _M_header;      // Last node which is not less than __k. 
  _Link_type __x = _M_root();      // Current node. 

  while (__x != 0) 
    if (!_M_key_compare(_S_key(__x), __k))
      __y = __x, __x = _S_left(__x);
    else
      __x = _S_right(__x);

  iterator __j = iterator(__y);   
  return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ? 
     end() : __j;
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator 
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k) const
{
  _Link_type __y = _M_header; /* Last node which is not less than __k. */
  _Link_type __x = _M_root(); /* Current node. */

  while (__x != 0) {
    if (!_M_key_compare(_S_key(__x), __k))
      __y = __x, __x = _S_left(__x);
    else
      __x = _S_right(__x);
  }
  const_iterator __j = const_iterator(__y);   
  return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ?
    end() : __j;
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::size_type 
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
  ::count(const _Key& __k) const
{
  pair<const_iterator, const_iterator> __p = equal_range(__k);
  size_type __n = 0;
  distance(__p.first, __p.second, __n);
  return __n;
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator 
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
  ::lower_bound(const _Key& __k)
{
  _Link_type __y = _M_header; /* Last node which is not less than __k. */
  _Link_type __x = _M_root(); /* Current node. */

  while (__x != 0) 
    if (!_M_key_compare(_S_key(__x), __k))
      __y = __x, __x = _S_left(__x);
    else
      __x = _S_right(__x);

  return iterator(__y);
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator 
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
  ::lower_bound(const _Key& __k) const
{
  _Link_type __y = _M_header; /* Last node which is not less than __k. */
  _Link_type __x = _M_root(); /* Current node. */

  while (__x != 0) 
    if (!_M_key_compare(_S_key(__x), __k))
      __y = __x, __x = _S_left(__x);
    else
      __x = _S_right(__x);

  return const_iterator(__y);
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator 
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
  ::upper_bound(const _Key& __k)
{
  _Link_type __y = _M_header; /* Last node which is greater than __k. */
  _Link_type __x = _M_root(); /* Current node. */

   while (__x != 0) 
     if (_M_key_compare(__k, _S_key(__x)))
       __y = __x, __x = _S_left(__x);
     else
       __x = _S_right(__x);

   return iterator(__y);
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator 
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
  ::upper_bound(const _Key& __k) const
{
  _Link_type __y = _M_header; /* Last node which is greater than __k. */
  _Link_type __x = _M_root(); /* Current node. */

   while (__x != 0) 
     if (_M_key_compare(__k, _S_key(__x)))
       __y = __x, __x = _S_left(__x);
     else
       __x = _S_right(__x);

   return const_iterator(__y);
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
inline 
pair<typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator,
     typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator>
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
  ::equal_range(const _Key& __k)
{
  return pair<iterator, iterator>(lower_bound(__k), upper_bound(__k));
}

template <class _Key, class _Value, class _KoV, class _Compare, class _Alloc>
inline 
pair<typename _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>::const_iterator,
     typename _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>::const_iterator>
_Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>
  ::equal_range(const _Key& __k) const
{
  return pair<const_iterator,const_iterator>(lower_bound(__k),
                                             upper_bound(__k));
}

inline int 
__black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root)
{
  if (__node == 0)
    return 0;
  else {
    int __bc = __node->_M_color == _S_rb_tree_black ? 1 : 0;
    if (__node == __root)
      return __bc;
    else
      return __bc + __black_count(__node->_M_parent, __root);
  }
}

template <class _Key, class _Value, class _KeyOfValue, 
          class _Compare, class _Alloc>
bool _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::__rb_verify() const
{
  if (_M_node_count == 0 || begin() == end())
    return _M_node_count == 0 && begin() == end() &&
      _M_header->_M_left == _M_header && _M_header->_M_right == _M_header;
  
  int __len = __black_count(_M_leftmost(), _M_root());
  for (const_iterator __it = begin(); __it != end(); ++__it) {
    _Link_type __x = (_Link_type) __it._M_node;
    _Link_type __L = _S_left(__x);
    _Link_type __R = _S_right(__x);

    if (__x->_M_color == _S_rb_tree_red)
      if ((__L && __L->_M_color == _S_rb_tree_red) ||
          (__R && __R->_M_color == _S_rb_tree_red))
        return false;

    if (__L && _M_key_compare(_S_key(__x), _S_key(__L)))
      return false;
    if (__R && _M_key_compare(_S_key(__R), _S_key(__x)))
      return false;

    if (!__L && !__R && __black_count(__x, _M_root()) != __len)
      return false;
  }

  if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root()))
    return false;
  if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root()))
    return false;

  return true;
}

// Class rb_tree is not part of the C++ standard.  It is provided for
// compatibility with the HP STL.

template <class _Key, class _Value, class _KeyOfValue, class _Compare,
          class _Alloc = __STL_DEFAULT_ALLOCATOR(_Value) >
struct rb_tree : public _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc>
{
  typedef _Rb_tree<_Key, _Value, _KeyOfValue, _Compare, _Alloc> _Base;
  typedef typename _Base::allocator_type allocator_type;

  rb_tree(const _Compare& __comp = _Compare(),
          const allocator_type& __a = allocator_type())
    : _Base(__comp, __a) {}
  
  ~rb_tree() {}
};

#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1375
#endif

__STL_END_NAMESPACE 

#endif /* __SGI_STL_INTERNAL_TREE_H */

// Local Variables:
// mode:C++
// End: