File: stl_function.h

package info (click to toggle)
stl-manual 3.30-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 4,092 kB
  • ctags: 4,448
  • sloc: cpp: 17,845; ansic: 2,842; makefile: 41
file content (725 lines) | stat: -rw-r--r-- 22,860 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996-1998
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/* NOTE: This is an internal header file, included by other STL headers.
 *   You should not attempt to use it directly.
 */

#ifndef __SGI_STL_INTERNAL_FUNCTION_H
#define __SGI_STL_INTERNAL_FUNCTION_H

__STL_BEGIN_NAMESPACE

template <class _Arg, class _Result>
struct unary_function {
  typedef _Arg argument_type;
  typedef _Result result_type;
};

template <class _Arg1, class _Arg2, class _Result>
struct binary_function {
  typedef _Arg1 first_argument_type;
  typedef _Arg2 second_argument_type;
  typedef _Result result_type;
};      

template <class _Tp>
struct plus : public binary_function<_Tp,_Tp,_Tp> {
  _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; }
};

template <class _Tp>
struct minus : public binary_function<_Tp,_Tp,_Tp> {
  _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; }
};

template <class _Tp>
struct multiplies : public binary_function<_Tp,_Tp,_Tp> {
  _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; }
};

template <class _Tp>
struct divides : public binary_function<_Tp,_Tp,_Tp> {
  _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; }
};

// identity_element (not part of the C++ standard).

template <class _Tp> inline _Tp identity_element(plus<_Tp>) {
  return _Tp(0);
}
template <class _Tp> inline _Tp identity_element(multiplies<_Tp>) {
  return _Tp(1);
}

template <class _Tp>
struct modulus : public binary_function<_Tp,_Tp,_Tp> 
{
  _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; }
};

template <class _Tp>
struct negate : public unary_function<_Tp,_Tp> 
{
  _Tp operator()(const _Tp& __x) const { return -__x; }
};

template <class _Tp>
struct equal_to : public binary_function<_Tp,_Tp,bool> 
{
  bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; }
};

template <class _Tp>
struct not_equal_to : public binary_function<_Tp,_Tp,bool> 
{
  bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; }
};

template <class _Tp>
struct greater : public binary_function<_Tp,_Tp,bool> 
{
  bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; }
};

template <class _Tp>
struct less : public binary_function<_Tp,_Tp,bool> 
{
  bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; }
};

template <class _Tp>
struct greater_equal : public binary_function<_Tp,_Tp,bool>
{
  bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; }
};

template <class _Tp>
struct less_equal : public binary_function<_Tp,_Tp,bool> 
{
  bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; }
};

template <class _Tp>
struct logical_and : public binary_function<_Tp,_Tp,bool>
{
  bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; }
};

template <class _Tp>
struct logical_or : public binary_function<_Tp,_Tp,bool>
{
  bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; }
};

template <class _Tp>
struct logical_not : public unary_function<_Tp,bool>
{
  bool operator()(const _Tp& __x) const { return !__x; }
};

template <class _Predicate>
class unary_negate
  : public unary_function<typename _Predicate::argument_type, bool> {
protected:
  _Predicate _M_pred;
public:
  explicit unary_negate(const _Predicate& __x) : _M_pred(__x) {}
  bool operator()(const typename _Predicate::argument_type& __x) const {
    return !_M_pred(__x);
  }
};

template <class _Predicate>
inline unary_negate<_Predicate> 
not1(const _Predicate& __pred)
{
  return unary_negate<_Predicate>(__pred);
}

template <class _Predicate> 
class binary_negate 
  : public binary_function<typename _Predicate::first_argument_type,
                           typename _Predicate::second_argument_type,
                           bool> {
protected:
  _Predicate _M_pred;
public:
  explicit binary_negate(const _Predicate& __x) : _M_pred(__x) {}
  bool operator()(const typename _Predicate::first_argument_type& __x, 
                  const typename _Predicate::second_argument_type& __y) const
  {
    return !_M_pred(__x, __y); 
  }
};

template <class _Predicate>
inline binary_negate<_Predicate> 
not2(const _Predicate& __pred)
{
  return binary_negate<_Predicate>(__pred);
}

template <class _Operation> 
class binder1st
  : public unary_function<typename _Operation::second_argument_type,
                          typename _Operation::result_type> {
protected:
  _Operation op;
  typename _Operation::first_argument_type value;
public:
  binder1st(const _Operation& __x,
            const typename _Operation::first_argument_type& __y)
      : op(__x), value(__y) {}
  typename _Operation::result_type
  operator()(const typename _Operation::second_argument_type& __x) const {
    return op(value, __x); 
  }
};

template <class _Operation, class _Tp>
inline binder1st<_Operation> 
bind1st(const _Operation& __fn, const _Tp& __x) 
{
  typedef typename _Operation::first_argument_type _Arg1_type;
  return binder1st<_Operation>(__fn, _Arg1_type(__x));
}

template <class _Operation> 
class binder2nd
  : public unary_function<typename _Operation::first_argument_type,
                          typename _Operation::result_type> {
protected:
  _Operation op;
  typename _Operation::second_argument_type value;
public:
  binder2nd(const _Operation& __x,
            const typename _Operation::second_argument_type& __y) 
      : op(__x), value(__y) {}
  typename _Operation::result_type
  operator()(const typename _Operation::first_argument_type& __x) const {
    return op(__x, value); 
  }
};

template <class _Operation, class _Tp>
inline binder2nd<_Operation> 
bind2nd(const _Operation& __fn, const _Tp& __x) 
{
  typedef typename _Operation::second_argument_type _Arg2_type;
  return binder2nd<_Operation>(__fn, _Arg2_type(__x));
}

// unary_compose and binary_compose (extensions, not part of the standard).

template <class _Operation1, class _Operation2>
class unary_compose
  : public unary_function<typename _Operation2::argument_type,
                          typename _Operation1::result_type> 
{
protected:
  _Operation1 _M_fn1;
  _Operation2 _M_fn2;
public:
  unary_compose(const _Operation1& __x, const _Operation2& __y) 
    : _M_fn1(__x), _M_fn2(__y) {}
  typename _Operation1::result_type
  operator()(const typename _Operation2::argument_type& __x) const {
    return _M_fn1(_M_fn2(__x));
  }
};

template <class _Operation1, class _Operation2>
inline unary_compose<_Operation1,_Operation2> 
compose1(const _Operation1& __fn1, const _Operation2& __fn2)
{
  return unary_compose<_Operation1,_Operation2>(__fn1, __fn2);
}

template <class _Operation1, class _Operation2, class _Operation3>
class binary_compose
  : public unary_function<typename _Operation2::argument_type,
                          typename _Operation1::result_type> {
protected:
  _Operation1 _M_fn1;
  _Operation2 _M_fn2;
  _Operation3 _M_fn3;
public:
  binary_compose(const _Operation1& __x, const _Operation2& __y, 
                 const _Operation3& __z) 
    : _M_fn1(__x), _M_fn2(__y), _M_fn3(__z) { }
  typename _Operation1::result_type
  operator()(const typename _Operation2::argument_type& __x) const {
    return _M_fn1(_M_fn2(__x), _M_fn3(__x));
  }
};

template <class _Operation1, class _Operation2, class _Operation3>
inline binary_compose<_Operation1, _Operation2, _Operation3> 
compose2(const _Operation1& __fn1, const _Operation2& __fn2, 
         const _Operation3& __fn3)
{
  return binary_compose<_Operation1,_Operation2,_Operation3>
    (__fn1, __fn2, __fn3);
}

template <class _Arg, class _Result>
class pointer_to_unary_function : public unary_function<_Arg, _Result> {
protected:
  _Result (*_M_ptr)(_Arg);
public:
  pointer_to_unary_function() {}
  explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) {}
  _Result operator()(_Arg __x) const { return _M_ptr(__x); }
};

template <class _Arg, class _Result>
inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg))
{
  return pointer_to_unary_function<_Arg, _Result>(__x);
}

template <class _Arg1, class _Arg2, class _Result>
class pointer_to_binary_function : 
  public binary_function<_Arg1,_Arg2,_Result> {
protected:
    _Result (*_M_ptr)(_Arg1, _Arg2);
public:
    pointer_to_binary_function() {}
    explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2)) 
      : _M_ptr(__x) {}
    _Result operator()(_Arg1 __x, _Arg2 __y) const {
      return _M_ptr(__x, __y);
    }
};

template <class _Arg1, class _Arg2, class _Result>
inline pointer_to_binary_function<_Arg1,_Arg2,_Result> 
ptr_fun(_Result (*__x)(_Arg1, _Arg2)) {
  return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__x);
}

// identity is an extensions: it is not part of the standard.
template <class _Tp>
struct _Identity : public unary_function<_Tp,_Tp> {
  const _Tp& operator()(const _Tp& __x) const { return __x; }
};

template <class _Tp> struct identity : public _Identity<_Tp> {};

// select1st and select2nd are extensions: they are not part of the standard.
template <class _Pair>
struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> {
  const typename _Pair::first_type& operator()(const _Pair& __x) const {
    return __x.first;
  }
};

template <class _Pair>
struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type>
{
  const typename _Pair::second_type& operator()(const _Pair& __x) const {
    return __x.second;
  }
};

template <class _Pair> struct select1st : public _Select1st<_Pair> {};
template <class _Pair> struct select2nd : public _Select2nd<_Pair> {};

// project1st and project2nd are extensions: they are not part of the standard
template <class _Arg1, class _Arg2>
struct _Project1st : public binary_function<_Arg1, _Arg2, _Arg1> {
  _Arg1 operator()(const _Arg1& __x, const _Arg2&) const { return __x; }
};

template <class _Arg1, class _Arg2>
struct _Project2nd : public binary_function<_Arg1, _Arg2, _Arg2> {
  _Arg2 operator()(const _Arg1&, const _Arg2& __y) const { return __y; }
};

template <class _Arg1, class _Arg2> 
struct project1st : public _Project1st<_Arg1, _Arg2> {};

template <class _Arg1, class _Arg2>
struct project2nd : public _Project2nd<_Arg1, _Arg2> {};

// constant_void_fun, constant_unary_fun, and constant_binary_fun are
// extensions: they are not part of the standard.  (The same, of course,
// is true of the helper functions constant0, constant1, and constant2.)

template <class _Result>
struct _Constant_void_fun {
  typedef _Result result_type;
  result_type _M_val;

  _Constant_void_fun(const result_type& __v) : _M_val(__v) {}
  const result_type& operator()() const { return _M_val; }
};  

template <class _Result, class _Argument>
struct _Constant_unary_fun {
  typedef _Argument argument_type;
  typedef  _Result  result_type;
  result_type _M_val;

  _Constant_unary_fun(const result_type& __v) : _M_val(__v) {}
  const result_type& operator()(const _Argument&) const { return _M_val; }
};

template <class _Result, class _Arg1, class _Arg2>
struct _Constant_binary_fun {
  typedef  _Arg1   first_argument_type;
  typedef  _Arg2   second_argument_type;
  typedef  _Result result_type;
  _Result _M_val;

  _Constant_binary_fun(const _Result& __v) : _M_val(__v) {}
  const result_type& operator()(const _Arg1&, const _Arg2&) const {
    return _M_val;
  }
};

template <class _Result>
struct constant_void_fun : public _Constant_void_fun<_Result> {
  constant_void_fun(const _Result& __v) : _Constant_void_fun<_Result>(__v) {}
};  


template <class _Result,
          class _Argument __STL_DEPENDENT_DEFAULT_TMPL(_Result)>
struct constant_unary_fun : public _Constant_unary_fun<_Result, _Argument>
{
  constant_unary_fun(const _Result& __v)
    : _Constant_unary_fun<_Result, _Argument>(__v) {}
};


template <class _Result,
          class _Arg1 __STL_DEPENDENT_DEFAULT_TMPL(_Result),
          class _Arg2 __STL_DEPENDENT_DEFAULT_TMPL(_Arg1)>
struct constant_binary_fun
  : public _Constant_binary_fun<_Result, _Arg1, _Arg2>
{
  constant_binary_fun(const _Result& __v)
    : _Constant_binary_fun<_Result, _Arg1, _Arg2>(__v) {}
};

template <class _Result>
inline constant_void_fun<_Result> constant0(const _Result& __val)
{
  return constant_void_fun<_Result>(__val);
}

template <class _Result>
inline constant_unary_fun<_Result,_Result> constant1(const _Result& __val)
{
  return constant_unary_fun<_Result,_Result>(__val);
}

template <class _Result>
inline constant_binary_fun<_Result,_Result,_Result> 
constant2(const _Result& __val)
{
  return constant_binary_fun<_Result,_Result,_Result>(__val);
}

// subtractive_rng is an extension: it is not part of the standard.
// Note: this code assumes that int is 32 bits.
class subtractive_rng : public unary_function<unsigned int, unsigned int> {
private:
  unsigned int _M_table[55];
  size_t _M_index1;
  size_t _M_index2;
public:
  unsigned int operator()(unsigned int __limit) {
    _M_index1 = (_M_index1 + 1) % 55;
    _M_index2 = (_M_index2 + 1) % 55;
    _M_table[_M_index1] = _M_table[_M_index1] - _M_table[_M_index2];
    return _M_table[_M_index1] % __limit;
  }

  void _M_initialize(unsigned int __seed)
  {
    unsigned int __k = 1;
    _M_table[54] = __seed;
    size_t __i;
    for (__i = 0; __i < 54; __i++) {
        size_t __ii = (21 * (__i + 1) % 55) - 1;
        _M_table[__ii] = __k;
        __k = __seed - __k;
        __seed = _M_table[__ii];
    }
    for (int __loop = 0; __loop < 4; __loop++) {
        for (__i = 0; __i < 55; __i++)
            _M_table[__i] = _M_table[__i] - _M_table[(1 + __i + 30) % 55];
    }
    _M_index1 = 0;
    _M_index2 = 31;
  }

  subtractive_rng(unsigned int __seed) { _M_initialize(__seed); }
  subtractive_rng() { _M_initialize(161803398u); }
};


// Adaptor function objects: pointers to member functions.

// There are a total of 16 = 2^4 function objects in this family.
//  (1) Member functions taking no arguments vs member functions taking
//       one argument.
//  (2) Call through pointer vs call through reference.
//  (3) Member function with void return type vs member function with
//      non-void return type.
//  (4) Const vs non-const member function.

// Note that choice (3) is nothing more than a workaround: according
//  to the draft, compilers should handle void and non-void the same way.
//  This feature is not yet widely implemented, though.  You can only use
//  member functions returning void if your compiler supports partial
//  specialization.

// All of this complexity is in the function objects themselves.  You can
//  ignore it by using the helper function mem_fun and mem_fun_ref,
//  which create whichever type of adaptor is appropriate.
//  (mem_fun1 and mem_fun1_ref are no longer part of the C++ standard,
//  but they are provided for backward compatibility.)


template <class _Ret, class _Tp>
class mem_fun_t : public unary_function<_Tp*,_Ret> {
public:
  explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
  _Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); }
private:
  _Ret (_Tp::*_M_f)();
};

template <class _Ret, class _Tp>
class const_mem_fun_t : public unary_function<const _Tp*,_Ret> {
public:
  explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
  _Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); }
private:
  _Ret (_Tp::*_M_f)() const;
};


template <class _Ret, class _Tp>
class mem_fun_ref_t : public unary_function<_Tp,_Ret> {
public:
  explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
  _Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); }
private:
  _Ret (_Tp::*_M_f)();
};

template <class _Ret, class _Tp>
class const_mem_fun_ref_t : public unary_function<_Tp,_Ret> {
public:
  explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
  _Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); }
private:
  _Ret (_Tp::*_M_f)() const;
};

template <class _Ret, class _Tp, class _Arg>
class mem_fun1_t : public binary_function<_Tp*,_Arg,_Ret> {
public:
  explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
  _Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); }
private:
  _Ret (_Tp::*_M_f)(_Arg);
};

template <class _Ret, class _Tp, class _Arg>
class const_mem_fun1_t : public binary_function<const _Tp*,_Arg,_Ret> {
public:
  explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
  _Ret operator()(const _Tp* __p, _Arg __x) const
    { return (__p->*_M_f)(__x); }
private:
  _Ret (_Tp::*_M_f)(_Arg) const;
};

template <class _Ret, class _Tp, class _Arg>
class mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
public:
  explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
  _Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
private:
  _Ret (_Tp::*_M_f)(_Arg);
};

template <class _Ret, class _Tp, class _Arg>
class const_mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
public:
  explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
  _Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
private:
  _Ret (_Tp::*_M_f)(_Arg) const;
};

#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION

template <class _Tp>
class mem_fun_t<void, _Tp> : public unary_function<_Tp*,void> {
public:
  explicit mem_fun_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
  void operator()(_Tp* __p) const { (__p->*_M_f)(); }
private:
  void (_Tp::*_M_f)();
};

template <class _Tp>
class const_mem_fun_t<void, _Tp> : public unary_function<const _Tp*,void> {
public:
  explicit const_mem_fun_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
  void operator()(const _Tp* __p) const { (__p->*_M_f)(); }
private:
  void (_Tp::*_M_f)() const;
};

template <class _Tp>
class mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
public:
  explicit mem_fun_ref_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
  void operator()(_Tp& __r) const { (__r.*_M_f)(); }
private:
  void (_Tp::*_M_f)();
};

template <class _Tp>
class const_mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
public:
  explicit const_mem_fun_ref_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
  void operator()(const _Tp& __r) const { (__r.*_M_f)(); }
private:
  void (_Tp::*_M_f)() const;
};

template <class _Tp, class _Arg>
class mem_fun1_t<void, _Tp, _Arg> : public binary_function<_Tp*,_Arg,void> {
public:
  explicit mem_fun1_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
  void operator()(_Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
private:
  void (_Tp::*_M_f)(_Arg);
};

template <class _Tp, class _Arg>
class const_mem_fun1_t<void, _Tp, _Arg> 
  : public binary_function<const _Tp*,_Arg,void> {
public:
  explicit const_mem_fun1_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
  void operator()(const _Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
private:
  void (_Tp::*_M_f)(_Arg) const;
};

template <class _Tp, class _Arg>
class mem_fun1_ref_t<void, _Tp, _Arg>
  : public binary_function<_Tp,_Arg,void> {
public:
  explicit mem_fun1_ref_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
  void operator()(_Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
private:
  void (_Tp::*_M_f)(_Arg);
};

template <class _Tp, class _Arg>
class const_mem_fun1_ref_t<void, _Tp, _Arg>
  : public binary_function<_Tp,_Arg,void> {
public:
  explicit const_mem_fun1_ref_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
  void operator()(const _Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
private:
  void (_Tp::*_M_f)(_Arg) const;
};

#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */

// Mem_fun adaptor helper functions.  There are only two:
//  mem_fun and mem_fun_ref.  (mem_fun1 and mem_fun1_ref 
//  are provided for backward compatibility, but they are no longer
//  part of the C++ standard.)

template <class _Ret, class _Tp>
inline mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)())
  { return mem_fun_t<_Ret,_Tp>(__f); }

template <class _Ret, class _Tp>
inline const_mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)() const)
  { return const_mem_fun_t<_Ret,_Tp>(__f); }

template <class _Ret, class _Tp>
inline mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)()) 
  { return mem_fun_ref_t<_Ret,_Tp>(__f); }

template <class _Ret, class _Tp>
inline const_mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)() const)
  { return const_mem_fun_ref_t<_Ret,_Tp>(__f); }

template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg))
  { return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }

template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const)
  { return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }

template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
  { return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }

template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
  { return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }

template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg))
  { return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }

template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg) const)
  { return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }

template <class _Ret, class _Tp, class _Arg>
inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun1_ref(_Ret (_Tp::*__f)(_Arg))
  { return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }

template <class _Ret, class _Tp, class _Arg>
inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
mem_fun1_ref(_Ret (_Tp::*__f)(_Arg) const)
  { return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }

__STL_END_NAMESPACE

#endif /* __SGI_STL_INTERNAL_FUNCTION_H */

// Local Variables:
// mode:C++
// End: