File: bitboard.cpp

package info (click to toggle)
stockfish 12-2
  • links: PTS
  • area: main
  • in suites: bullseye, sid
  • size: 21,436 kB
  • sloc: cpp: 9,020; makefile: 740; ansic: 199; sh: 193
file content (213 lines) | stat: -rw-r--r-- 7,568 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
  Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file)

  Stockfish is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  Stockfish is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include <algorithm>
#include <bitset>

#include "bitboard.h"
#include "misc.h"

uint8_t PopCnt16[1 << 16];
uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];

Bitboard SquareBB[SQUARE_NB];
Bitboard LineBB[SQUARE_NB][SQUARE_NB];
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];

Magic RookMagics[SQUARE_NB];
Magic BishopMagics[SQUARE_NB];

namespace {

  Bitboard RookTable[0x19000];  // To store rook attacks
  Bitboard BishopTable[0x1480]; // To store bishop attacks

  void init_magics(PieceType pt, Bitboard table[], Magic magics[]);

}


/// safe_destination() returns the bitboard of target square for the given step
/// from the given square. If the step is off the board, returns empty bitboard.

inline Bitboard safe_destination(Square s, int step) {
    Square to = Square(s + step);
    return is_ok(to) && distance(s, to) <= 2 ? square_bb(to) : Bitboard(0);
}


/// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
/// to be printed to standard output. Useful for debugging.

const std::string Bitboards::pretty(Bitboard b) {

  std::string s = "+---+---+---+---+---+---+---+---+\n";

  for (Rank r = RANK_8; r >= RANK_1; --r)
  {
      for (File f = FILE_A; f <= FILE_H; ++f)
          s += b & make_square(f, r) ? "| X " : "|   ";

      s += "| " + std::to_string(1 + r) + "\n+---+---+---+---+---+---+---+---+\n";
  }
  s += "  a   b   c   d   e   f   g   h\n";

  return s;
}


/// Bitboards::init() initializes various bitboard tables. It is called at
/// startup and relies on global objects to be already zero-initialized.

void Bitboards::init() {

  for (unsigned i = 0; i < (1 << 16); ++i)
      PopCnt16[i] = uint8_t(std::bitset<16>(i).count());

  for (Square s = SQ_A1; s <= SQ_H8; ++s)
      SquareBB[s] = (1ULL << s);

  for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
      for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
          SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));

  init_magics(ROOK, RookTable, RookMagics);
  init_magics(BISHOP, BishopTable, BishopMagics);

  for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
  {
      PawnAttacks[WHITE][s1] = pawn_attacks_bb<WHITE>(square_bb(s1));
      PawnAttacks[BLACK][s1] = pawn_attacks_bb<BLACK>(square_bb(s1));

      for (int step : {-9, -8, -7, -1, 1, 7, 8, 9} )
         PseudoAttacks[KING][s1] |= safe_destination(s1, step);

      for (int step : {-17, -15, -10, -6, 6, 10, 15, 17} )
         PseudoAttacks[KNIGHT][s1] |= safe_destination(s1, step);

      PseudoAttacks[QUEEN][s1]  = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
      PseudoAttacks[QUEEN][s1] |= PseudoAttacks[  ROOK][s1] = attacks_bb<  ROOK>(s1, 0);

      for (PieceType pt : { BISHOP, ROOK })
          for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
              if (PseudoAttacks[pt][s1] & s2)
                  LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
  }
}


namespace {

  Bitboard sliding_attack(PieceType pt, Square sq, Bitboard occupied) {

    Bitboard attacks = 0;
    Direction   RookDirections[4] = {NORTH, SOUTH, EAST, WEST};
    Direction BishopDirections[4] = {NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST};

    for (Direction d : (pt == ROOK ? RookDirections : BishopDirections))
    {
        Square s = sq;
        while(safe_destination(s, d) && !(occupied & s))
            attacks |= (s += d);
    }

    return attacks;
  }


  // init_magics() computes all rook and bishop attacks at startup. Magic
  // bitboards are used to look up attacks of sliding pieces. As a reference see
  // www.chessprogramming.org/Magic_Bitboards. In particular, here we use the so
  // called "fancy" approach.

  void init_magics(PieceType pt, Bitboard table[], Magic magics[]) {

    // Optimal PRNG seeds to pick the correct magics in the shortest time
    int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998,  5731, 95205, 104912, 17020 },
                             {  728, 10316, 55013, 32803, 12281, 15100,  16645,   255 } };

    Bitboard occupancy[4096], reference[4096], edges, b;
    int epoch[4096] = {}, cnt = 0, size = 0;

    for (Square s = SQ_A1; s <= SQ_H8; ++s)
    {
        // Board edges are not considered in the relevant occupancies
        edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));

        // Given a square 's', the mask is the bitboard of sliding attacks from
        // 's' computed on an empty board. The index must be big enough to contain
        // all the attacks for each possible subset of the mask and so is 2 power
        // the number of 1s of the mask. Hence we deduce the size of the shift to
        // apply to the 64 or 32 bits word to get the index.
        Magic& m = magics[s];
        m.mask  = sliding_attack(pt, s, 0) & ~edges;
        m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);

        // Set the offset for the attacks table of the square. We have individual
        // table sizes for each square with "Fancy Magic Bitboards".
        m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size;

        // Use Carry-Rippler trick to enumerate all subsets of masks[s] and
        // store the corresponding sliding attack bitboard in reference[].
        b = size = 0;
        do {
            occupancy[size] = b;
            reference[size] = sliding_attack(pt, s, b);

            if (HasPext)
                m.attacks[pext(b, m.mask)] = reference[size];

            size++;
            b = (b - m.mask) & m.mask;
        } while (b);

        if (HasPext)
            continue;

        PRNG rng(seeds[Is64Bit][rank_of(s)]);

        // Find a magic for square 's' picking up an (almost) random number
        // until we find the one that passes the verification test.
        for (int i = 0; i < size; )
        {
            for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; )
                m.magic = rng.sparse_rand<Bitboard>();

            // A good magic must map every possible occupancy to an index that
            // looks up the correct sliding attack in the attacks[s] database.
            // Note that we build up the database for square 's' as a side
            // effect of verifying the magic. Keep track of the attempt count
            // and save it in epoch[], little speed-up trick to avoid resetting
            // m.attacks[] after every failed attempt.
            for (++cnt, i = 0; i < size; ++i)
            {
                unsigned idx = m.index(occupancy[i]);

                if (epoch[idx] < cnt)
                {
                    epoch[idx] = cnt;
                    m.attacks[idx] = reference[i];
                }
                else if (m.attacks[idx] != reference[i])
                    break;
            }
        }
    }
  }
}