1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cassert>
#include <cstring> // For std::memset
#include "material.h"
#include "thread.h"
using namespace std;
namespace {
// Polynomial material imbalance parameters
constexpr int QuadraticOurs[][PIECE_TYPE_NB] = {
// OUR PIECES
// pair pawn knight bishop rook queen
{1438 }, // Bishop pair
{ 40, 38 }, // Pawn
{ 32, 255, -62 }, // Knight OUR PIECES
{ 0, 104, 4, 0 }, // Bishop
{ -26, -2, 47, 105, -208 }, // Rook
{-189, 24, 117, 133, -134, -6 } // Queen
};
constexpr int QuadraticTheirs[][PIECE_TYPE_NB] = {
// THEIR PIECES
// pair pawn knight bishop rook queen
{ }, // Bishop pair
{ 36, }, // Pawn
{ 9, 63, }, // Knight OUR PIECES
{ 59, 65, 42, }, // Bishop
{ 46, 39, 24, -24, }, // Rook
{ 97, 100, -42, 137, 268, } // Queen
};
// Endgame evaluation and scaling functions are accessed directly and not through
// the function maps because they correspond to more than one material hash key.
Endgame<KXK> EvaluateKXK[] = { Endgame<KXK>(WHITE), Endgame<KXK>(BLACK) };
Endgame<KBPsK> ScaleKBPsK[] = { Endgame<KBPsK>(WHITE), Endgame<KBPsK>(BLACK) };
Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
Endgame<KPsK> ScaleKPsK[] = { Endgame<KPsK>(WHITE), Endgame<KPsK>(BLACK) };
Endgame<KPKP> ScaleKPKP[] = { Endgame<KPKP>(WHITE), Endgame<KPKP>(BLACK) };
// Helper used to detect a given material distribution
bool is_KXK(const Position& pos, Color us) {
return !more_than_one(pos.pieces(~us))
&& pos.non_pawn_material(us) >= RookValueMg;
}
bool is_KBPsK(const Position& pos, Color us) {
return pos.non_pawn_material(us) == BishopValueMg
&& pos.count<PAWN >(us) >= 1;
}
bool is_KQKRPs(const Position& pos, Color us) {
return !pos.count<PAWN>(us)
&& pos.non_pawn_material(us) == QueenValueMg
&& pos.count<ROOK>(~us) == 1
&& pos.count<PAWN>(~us) >= 1;
}
/// imbalance() calculates the imbalance by comparing the piece count of each
/// piece type for both colors.
template<Color Us>
int imbalance(const int pieceCount[][PIECE_TYPE_NB]) {
constexpr Color Them = ~Us;
int bonus = 0;
// Second-degree polynomial material imbalance, by Tord Romstad
for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1)
{
if (!pieceCount[Us][pt1])
continue;
int v = QuadraticOurs[pt1][pt1] * pieceCount[Us][pt1];
for (int pt2 = NO_PIECE_TYPE; pt2 < pt1; ++pt2)
v += QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2]
+ QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2];
bonus += pieceCount[Us][pt1] * v;
}
return bonus;
}
} // namespace
namespace Material {
/// Material::probe() looks up the current position's material configuration in
/// the material hash table. It returns a pointer to the Entry if the position
/// is found. Otherwise a new Entry is computed and stored there, so we don't
/// have to recompute all when the same material configuration occurs again.
Entry* probe(const Position& pos) {
Key key = pos.material_key();
Entry* e = pos.this_thread()->materialTable[key];
if (e->key == key)
return e;
std::memset(e, 0, sizeof(Entry));
e->key = key;
e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
Value npm_w = pos.non_pawn_material(WHITE);
Value npm_b = pos.non_pawn_material(BLACK);
Value npm = std::clamp(npm_w + npm_b, EndgameLimit, MidgameLimit);
// Map total non-pawn material into [PHASE_ENDGAME, PHASE_MIDGAME]
e->gamePhase = Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit));
// Let's look if we have a specialized evaluation function for this particular
// material configuration. Firstly we look for a fixed configuration one, then
// for a generic one if the previous search failed.
if ((e->evaluationFunction = Endgames::probe<Value>(key)) != nullptr)
return e;
for (Color c : { WHITE, BLACK })
if (is_KXK(pos, c))
{
e->evaluationFunction = &EvaluateKXK[c];
return e;
}
// OK, we didn't find any special evaluation function for the current material
// configuration. Is there a suitable specialized scaling function?
const auto* sf = Endgames::probe<ScaleFactor>(key);
if (sf)
{
e->scalingFunction[sf->strongSide] = sf; // Only strong color assigned
return e;
}
// We didn't find any specialized scaling function, so fall back on generic
// ones that refer to more than one material distribution. Note that in this
// case we don't return after setting the function.
for (Color c : { WHITE, BLACK })
{
if (is_KBPsK(pos, c))
e->scalingFunction[c] = &ScaleKBPsK[c];
else if (is_KQKRPs(pos, c))
e->scalingFunction[c] = &ScaleKQKRPs[c];
}
if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board
{
if (!pos.count<PAWN>(BLACK))
{
assert(pos.count<PAWN>(WHITE) >= 2);
e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
}
else if (!pos.count<PAWN>(WHITE))
{
assert(pos.count<PAWN>(BLACK) >= 2);
e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
}
else if (pos.count<PAWN>(WHITE) == 1 && pos.count<PAWN>(BLACK) == 1)
{
// This is a special case because we set scaling functions
// for both colors instead of only one.
e->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
e->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
}
}
// Zero or just one pawn makes it difficult to win, even with a small material
// advantage. This catches some trivial draws like KK, KBK and KNK and gives a
// drawish scale factor for cases such as KRKBP and KmmKm (except for KBBKN).
if (!pos.count<PAWN>(WHITE) && npm_w - npm_b <= BishopValueMg)
e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW :
npm_b <= BishopValueMg ? 4 : 14);
if (!pos.count<PAWN>(BLACK) && npm_b - npm_w <= BishopValueMg)
e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW :
npm_w <= BishopValueMg ? 4 : 14);
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
// for the bishop pair "extended piece", which allows us to be more flexible
// in defining bishop pair bonuses.
const int pieceCount[COLOR_NB][PIECE_TYPE_NB] = {
{ pos.count<BISHOP>(WHITE) > 1, pos.count<PAWN>(WHITE), pos.count<KNIGHT>(WHITE),
pos.count<BISHOP>(WHITE) , pos.count<ROOK>(WHITE), pos.count<QUEEN >(WHITE) },
{ pos.count<BISHOP>(BLACK) > 1, pos.count<PAWN>(BLACK), pos.count<KNIGHT>(BLACK),
pos.count<BISHOP>(BLACK) , pos.count<ROOK>(BLACK), pos.count<QUEEN >(BLACK) } };
e->value = int16_t((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16);
return e;
}
} // namespace Material
|