File: search.cpp

package info (click to toggle)
stockfish 12-2
  • links: PTS
  • area: main
  • in suites: bullseye, sid
  • size: 21,436 kB
  • sloc: cpp: 9,020; makefile: 740; ansic: 199; sh: 193
file content (1982 lines) | stat: -rw-r--r-- 72,349 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
/*
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
  Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file)

  Stockfish is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  Stockfish is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring>   // For std::memset
#include <iostream>
#include <sstream>

#include "evaluate.h"
#include "misc.h"
#include "movegen.h"
#include "movepick.h"
#include "position.h"
#include "search.h"
#include "thread.h"
#include "timeman.h"
#include "tt.h"
#include "uci.h"
#include "syzygy/tbprobe.h"

namespace Search {

  LimitsType Limits;
}

namespace Tablebases {

  int Cardinality;
  bool RootInTB;
  bool UseRule50;
  Depth ProbeDepth;
}

namespace TB = Tablebases;

using std::string;
using Eval::evaluate;
using namespace Search;

namespace {

  // Different node types, used as a template parameter
  enum NodeType { NonPV, PV };

  constexpr uint64_t TtHitAverageWindow     = 4096;
  constexpr uint64_t TtHitAverageResolution = 1024;

  // Razor and futility margins
  constexpr int RazorMargin = 510;
  Value futility_margin(Depth d, bool improving) {
    return Value(223 * (d - improving));
  }

  // Reductions lookup table, initialized at startup
  int Reductions[MAX_MOVES]; // [depth or moveNumber]

  Depth reduction(bool i, Depth d, int mn) {
    int r = Reductions[d] * Reductions[mn];
    return (r + 509) / 1024 + (!i && r > 894);
  }

  constexpr int futility_move_count(bool improving, Depth depth) {
    return (3 + depth * depth) / (2 - improving);
  }

  // History and stats update bonus, based on depth
  int stat_bonus(Depth d) {
    return d > 13 ? 29 : 17 * d * d + 134 * d - 134;
  }

  // Add a small random component to draw evaluations to avoid 3fold-blindness
  Value value_draw(Thread* thisThread) {
    return VALUE_DRAW + Value(2 * (thisThread->nodes & 1) - 1);
  }

  // Skill structure is used to implement strength limit
  struct Skill {
    explicit Skill(int l) : level(l) {}
    bool enabled() const { return level < 20; }
    bool time_to_pick(Depth depth) const { return depth == 1 + level; }
    Move pick_best(size_t multiPV);

    int level;
    Move best = MOVE_NONE;
  };

  // Breadcrumbs are used to mark nodes as being searched by a given thread
  struct Breadcrumb {
    std::atomic<Thread*> thread;
    std::atomic<Key> key;
  };
  std::array<Breadcrumb, 1024> breadcrumbs;

  // ThreadHolding structure keeps track of which thread left breadcrumbs at the given
  // node for potential reductions. A free node will be marked upon entering the moves
  // loop by the constructor, and unmarked upon leaving that loop by the destructor.
  struct ThreadHolding {
    explicit ThreadHolding(Thread* thisThread, Key posKey, int ply) {
       location = ply < 8 ? &breadcrumbs[posKey & (breadcrumbs.size() - 1)] : nullptr;
       otherThread = false;
       owning = false;
       if (location)
       {
          // See if another already marked this location, if not, mark it ourselves
          Thread* tmp = (*location).thread.load(std::memory_order_relaxed);
          if (tmp == nullptr)
          {
              (*location).thread.store(thisThread, std::memory_order_relaxed);
              (*location).key.store(posKey, std::memory_order_relaxed);
              owning = true;
          }
          else if (   tmp != thisThread
                   && (*location).key.load(std::memory_order_relaxed) == posKey)
              otherThread = true;
       }
    }

    ~ThreadHolding() {
       if (owning) // Free the marked location
           (*location).thread.store(nullptr, std::memory_order_relaxed);
    }

    bool marked() { return otherThread; }

    private:
    Breadcrumb* location;
    bool otherThread, owning;
  };

  template <NodeType NT>
  Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode);

  template <NodeType NT>
  Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth = 0);

  Value value_to_tt(Value v, int ply);
  Value value_from_tt(Value v, int ply, int r50c);
  void update_pv(Move* pv, Move move, Move* childPv);
  void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus);
  void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus, int depth);
  void update_all_stats(const Position& pos, Stack* ss, Move bestMove, Value bestValue, Value beta, Square prevSq,
                        Move* quietsSearched, int quietCount, Move* capturesSearched, int captureCount, Depth depth);

  // perft() is our utility to verify move generation. All the leaf nodes up
  // to the given depth are generated and counted, and the sum is returned.
  template<bool Root>
  uint64_t perft(Position& pos, Depth depth) {

    StateInfo st;
    uint64_t cnt, nodes = 0;
    const bool leaf = (depth == 2);

    for (const auto& m : MoveList<LEGAL>(pos))
    {
        if (Root && depth <= 1)
            cnt = 1, nodes++;
        else
        {
            pos.do_move(m, st);
            cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - 1);
            nodes += cnt;
            pos.undo_move(m);
        }
        if (Root)
            sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl;
    }
    return nodes;
  }

} // namespace


/// Search::init() is called at startup to initialize various lookup tables

void Search::init() {

  for (int i = 1; i < MAX_MOVES; ++i)
      Reductions[i] = int((22.0 + std::log(Threads.size())) * std::log(i));
}


/// Search::clear() resets search state to its initial value

void Search::clear() {

  Threads.main()->wait_for_search_finished();

  Time.availableNodes = 0;
  TT.clear();
  Threads.clear();
  Tablebases::init(Options["SyzygyPath"]); // Free mapped files
}


/// MainThread::search() is started when the program receives the UCI 'go'
/// command. It searches from the root position and outputs the "bestmove".

void MainThread::search() {

  if (Limits.perft)
  {
      nodes = perft<true>(rootPos, Limits.perft);
      sync_cout << "\nNodes searched: " << nodes << "\n" << sync_endl;
      return;
  }

  Color us = rootPos.side_to_move();
  Time.init(Limits, us, rootPos.game_ply());
  TT.new_search();

  Eval::verify_NNUE();

  if (rootMoves.empty())
  {
      rootMoves.emplace_back(MOVE_NONE);
      sync_cout << "info depth 0 score "
                << UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
                << sync_endl;
  }
  else
  {
      Threads.start_searching(); // start non-main threads
      Thread::search();          // main thread start searching
  }

  // When we reach the maximum depth, we can arrive here without a raise of
  // Threads.stop. However, if we are pondering or in an infinite search,
  // the UCI protocol states that we shouldn't print the best move before the
  // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here
  // until the GUI sends one of those commands.

  while (!Threads.stop && (ponder || Limits.infinite))
  {} // Busy wait for a stop or a ponder reset

  // Stop the threads if not already stopped (also raise the stop if
  // "ponderhit" just reset Threads.ponder).
  Threads.stop = true;

  // Wait until all threads have finished
  Threads.wait_for_search_finished();

  // When playing in 'nodes as time' mode, subtract the searched nodes from
  // the available ones before exiting.
  if (Limits.npmsec)
      Time.availableNodes += Limits.inc[us] - Threads.nodes_searched();

  Thread* bestThread = this;

  if (   int(Options["MultiPV"]) == 1
      && !Limits.depth
      && !(Skill(Options["Skill Level"]).enabled() || int(Options["UCI_LimitStrength"]))
      && rootMoves[0].pv[0] != MOVE_NONE)
      bestThread = Threads.get_best_thread();

  bestPreviousScore = bestThread->rootMoves[0].score;

  // Send again PV info if we have a new best thread
  if (bestThread != this)
      sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl;

  sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960());

  if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos))
      std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960());

  std::cout << sync_endl;
}


/// Thread::search() is the main iterative deepening loop. It calls search()
/// repeatedly with increasing depth until the allocated thinking time has been
/// consumed, the user stops the search, or the maximum search depth is reached.

void Thread::search() {

  // To allow access to (ss-7) up to (ss+2), the stack must be oversized.
  // The former is needed to allow update_continuation_histories(ss-1, ...),
  // which accesses its argument at ss-6, also near the root.
  // The latter is needed for statScores and killer initialization.
  Stack stack[MAX_PLY+10], *ss = stack+7;
  Move  pv[MAX_PLY+1];
  Value bestValue, alpha, beta, delta;
  Move  lastBestMove = MOVE_NONE;
  Depth lastBestMoveDepth = 0;
  MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr);
  double timeReduction = 1, totBestMoveChanges = 0;
  Color us = rootPos.side_to_move();
  int iterIdx = 0;

  std::memset(ss-7, 0, 10 * sizeof(Stack));
  for (int i = 7; i > 0; i--)
      (ss-i)->continuationHistory = &this->continuationHistory[0][0][NO_PIECE][0]; // Use as a sentinel

  ss->pv = pv;

  bestValue = delta = alpha = -VALUE_INFINITE;
  beta = VALUE_INFINITE;

  if (mainThread)
  {
      if (mainThread->bestPreviousScore == VALUE_INFINITE)
          for (int i = 0; i < 4; ++i)
              mainThread->iterValue[i] = VALUE_ZERO;
      else
          for (int i = 0; i < 4; ++i)
              mainThread->iterValue[i] = mainThread->bestPreviousScore;
  }

  std::copy(&lowPlyHistory[2][0], &lowPlyHistory.back().back() + 1, &lowPlyHistory[0][0]);
  std::fill(&lowPlyHistory[MAX_LPH - 2][0], &lowPlyHistory.back().back() + 1, 0);

  size_t multiPV = size_t(Options["MultiPV"]);

  // Pick integer skill levels, but non-deterministically round up or down
  // such that the average integer skill corresponds to the input floating point one.
  // UCI_Elo is converted to a suitable fractional skill level, using anchoring
  // to CCRL Elo (goldfish 1.13 = 2000) and a fit through Ordo derived Elo
  // for match (TC 60+0.6) results spanning a wide range of k values.
  PRNG rng(now());
  double floatLevel = Options["UCI_LimitStrength"] ?
                      std::clamp(std::pow((Options["UCI_Elo"] - 1346.6) / 143.4, 1 / 0.806), 0.0, 20.0) :
                        double(Options["Skill Level"]);
  int intLevel = int(floatLevel) +
                 ((floatLevel - int(floatLevel)) * 1024 > rng.rand<unsigned>() % 1024  ? 1 : 0);
  Skill skill(intLevel);

  // When playing with strength handicap enable MultiPV search that we will
  // use behind the scenes to retrieve a set of possible moves.
  if (skill.enabled())
      multiPV = std::max(multiPV, (size_t)4);

  multiPV = std::min(multiPV, rootMoves.size());
  ttHitAverage = TtHitAverageWindow * TtHitAverageResolution / 2;

  int ct = int(Options["Contempt"]) * PawnValueEg / 100; // From centipawns

  // In analysis mode, adjust contempt in accordance with user preference
  if (Limits.infinite || Options["UCI_AnalyseMode"])
      ct =  Options["Analysis Contempt"] == "Off"  ? 0
          : Options["Analysis Contempt"] == "Both" ? ct
          : Options["Analysis Contempt"] == "White" && us == BLACK ? -ct
          : Options["Analysis Contempt"] == "Black" && us == WHITE ? -ct
          : ct;

  // Evaluation score is from the white point of view
  contempt = (us == WHITE ?  make_score(ct, ct / 2)
                          : -make_score(ct, ct / 2));

  int searchAgainCounter = 0;

  // Iterative deepening loop until requested to stop or the target depth is reached
  while (   ++rootDepth < MAX_PLY
         && !Threads.stop
         && !(Limits.depth && mainThread && rootDepth > Limits.depth))
  {
      // Age out PV variability metric
      if (mainThread)
          totBestMoveChanges /= 2;

      // Save the last iteration's scores before first PV line is searched and
      // all the move scores except the (new) PV are set to -VALUE_INFINITE.
      for (RootMove& rm : rootMoves)
          rm.previousScore = rm.score;

      size_t pvFirst = 0;
      pvLast = 0;

      if (!Threads.increaseDepth)
         searchAgainCounter++;

      // MultiPV loop. We perform a full root search for each PV line
      for (pvIdx = 0; pvIdx < multiPV && !Threads.stop; ++pvIdx)
      {
          if (pvIdx == pvLast)
          {
              pvFirst = pvLast;
              for (pvLast++; pvLast < rootMoves.size(); pvLast++)
                  if (rootMoves[pvLast].tbRank != rootMoves[pvFirst].tbRank)
                      break;
          }

          // Reset UCI info selDepth for each depth and each PV line
          selDepth = 0;

          // Reset aspiration window starting size
          if (rootDepth >= 4)
          {
              Value prev = rootMoves[pvIdx].previousScore;
              delta = Value(17);
              alpha = std::max(prev - delta,-VALUE_INFINITE);
              beta  = std::min(prev + delta, VALUE_INFINITE);

              // Adjust contempt based on root move's previousScore (dynamic contempt)
              int dct = ct + (105 - ct / 2) * prev / (abs(prev) + 149);

              contempt = (us == WHITE ?  make_score(dct, dct / 2)
                                      : -make_score(dct, dct / 2));
          }

          // Start with a small aspiration window and, in the case of a fail
          // high/low, re-search with a bigger window until we don't fail
          // high/low anymore.
          int failedHighCnt = 0;
          while (true)
          {
              Depth adjustedDepth = std::max(1, rootDepth - failedHighCnt - searchAgainCounter);
              bestValue = ::search<PV>(rootPos, ss, alpha, beta, adjustedDepth, false);

              // Bring the best move to the front. It is critical that sorting
              // is done with a stable algorithm because all the values but the
              // first and eventually the new best one are set to -VALUE_INFINITE
              // and we want to keep the same order for all the moves except the
              // new PV that goes to the front. Note that in case of MultiPV
              // search the already searched PV lines are preserved.
              std::stable_sort(rootMoves.begin() + pvIdx, rootMoves.begin() + pvLast);

              // If search has been stopped, we break immediately. Sorting is
              // safe because RootMoves is still valid, although it refers to
              // the previous iteration.
              if (Threads.stop)
                  break;

              // When failing high/low give some update (without cluttering
              // the UI) before a re-search.
              if (   mainThread
                  && multiPV == 1
                  && (bestValue <= alpha || bestValue >= beta)
                  && Time.elapsed() > 3000)
                  sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;

              // In case of failing low/high increase aspiration window and
              // re-search, otherwise exit the loop.
              if (bestValue <= alpha)
              {
                  beta = (alpha + beta) / 2;
                  alpha = std::max(bestValue - delta, -VALUE_INFINITE);

                  failedHighCnt = 0;
                  if (mainThread)
                      mainThread->stopOnPonderhit = false;
              }
              else if (bestValue >= beta)
              {
                  beta = std::min(bestValue + delta, VALUE_INFINITE);
                  ++failedHighCnt;
              }
              else
              {
                  ++rootMoves[pvIdx].bestMoveCount;
                  break;
              }

              delta += delta / 4 + 5;

              assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
          }

          // Sort the PV lines searched so far and update the GUI
          std::stable_sort(rootMoves.begin() + pvFirst, rootMoves.begin() + pvIdx + 1);

          if (    mainThread
              && (Threads.stop || pvIdx + 1 == multiPV || Time.elapsed() > 3000))
              sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
      }

      if (!Threads.stop)
          completedDepth = rootDepth;

      if (rootMoves[0].pv[0] != lastBestMove) {
         lastBestMove = rootMoves[0].pv[0];
         lastBestMoveDepth = rootDepth;
      }

      // Have we found a "mate in x"?
      if (   Limits.mate
          && bestValue >= VALUE_MATE_IN_MAX_PLY
          && VALUE_MATE - bestValue <= 2 * Limits.mate)
          Threads.stop = true;

      if (!mainThread)
          continue;

      // If skill level is enabled and time is up, pick a sub-optimal best move
      if (skill.enabled() && skill.time_to_pick(rootDepth))
          skill.pick_best(multiPV);

      // Do we have time for the next iteration? Can we stop searching now?
      if (    Limits.use_time_management()
          && !Threads.stop
          && !mainThread->stopOnPonderhit)
      {
          double fallingEval = (318 + 6 * (mainThread->bestPreviousScore - bestValue)
                                    + 6 * (mainThread->iterValue[iterIdx] - bestValue)) / 825.0;
          fallingEval = std::clamp(fallingEval, 0.5, 1.5);

          // If the bestMove is stable over several iterations, reduce time accordingly
          timeReduction = lastBestMoveDepth + 9 < completedDepth ? 1.92 : 0.95;
          double reduction = (1.47 + mainThread->previousTimeReduction) / (2.32 * timeReduction);

          // Use part of the gained time from a previous stable move for the current move
          for (Thread* th : Threads)
          {
              totBestMoveChanges += th->bestMoveChanges;
              th->bestMoveChanges = 0;
          }
          double bestMoveInstability = 1 + totBestMoveChanges / Threads.size();

          double totalTime = rootMoves.size() == 1 ? 0 :
                             Time.optimum() * fallingEval * reduction * bestMoveInstability;

          // Stop the search if we have exceeded the totalTime, at least 1ms search
          if (Time.elapsed() > totalTime)
          {
              // If we are allowed to ponder do not stop the search now but
              // keep pondering until the GUI sends "ponderhit" or "stop".
              if (mainThread->ponder)
                  mainThread->stopOnPonderhit = true;
              else
                  Threads.stop = true;
          }
          else if (   Threads.increaseDepth
                   && !mainThread->ponder
                   && Time.elapsed() > totalTime * 0.58)
                   Threads.increaseDepth = false;
          else
                   Threads.increaseDepth = true;
      }

      mainThread->iterValue[iterIdx] = bestValue;
      iterIdx = (iterIdx + 1) & 3;
  }

  if (!mainThread)
      return;

  mainThread->previousTimeReduction = timeReduction;

  // If skill level is enabled, swap best PV line with the sub-optimal one
  if (skill.enabled())
      std::swap(rootMoves[0], *std::find(rootMoves.begin(), rootMoves.end(),
                skill.best ? skill.best : skill.pick_best(multiPV)));
}


namespace {

  // search<>() is the main search function for both PV and non-PV nodes

  template <NodeType NT>
  Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {

    constexpr bool PvNode = NT == PV;
    const bool rootNode = PvNode && ss->ply == 0;

    // Check if we have an upcoming move which draws by repetition, or
    // if the opponent had an alternative move earlier to this position.
    if (   pos.rule50_count() >= 3
        && alpha < VALUE_DRAW
        && !rootNode
        && pos.has_game_cycle(ss->ply))
    {
        alpha = value_draw(pos.this_thread());
        if (alpha >= beta)
            return alpha;
    }

    // Dive into quiescence search when the depth reaches zero
    if (depth <= 0)
        return qsearch<NT>(pos, ss, alpha, beta);

    assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
    assert(PvNode || (alpha == beta - 1));
    assert(0 < depth && depth < MAX_PLY);
    assert(!(PvNode && cutNode));

    Move pv[MAX_PLY+1], capturesSearched[32], quietsSearched[64];
    StateInfo st;
    TTEntry* tte;
    Key posKey;
    Move ttMove, move, excludedMove, bestMove;
    Depth extension, newDepth;
    Value bestValue, value, ttValue, eval, maxValue, probCutBeta;
    bool ttHit, formerPv, givesCheck, improving, didLMR, priorCapture;
    bool captureOrPromotion, doFullDepthSearch, moveCountPruning,
         ttCapture, singularQuietLMR;
    Piece movedPiece;
    int moveCount, captureCount, quietCount;

    // Step 1. Initialize node
    Thread* thisThread = pos.this_thread();
    ss->inCheck = pos.checkers();
    priorCapture = pos.captured_piece();
    Color us = pos.side_to_move();
    moveCount = captureCount = quietCount = ss->moveCount = 0;
    bestValue = -VALUE_INFINITE;
    maxValue = VALUE_INFINITE;

    // Check for the available remaining time
    if (thisThread == Threads.main())
        static_cast<MainThread*>(thisThread)->check_time();

    // Used to send selDepth info to GUI (selDepth counts from 1, ply from 0)
    if (PvNode && thisThread->selDepth < ss->ply + 1)
        thisThread->selDepth = ss->ply + 1;

    if (!rootNode)
    {
        // Step 2. Check for aborted search and immediate draw
        if (   Threads.stop.load(std::memory_order_relaxed)
            || pos.is_draw(ss->ply)
            || ss->ply >= MAX_PLY)
            return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos)
                                                        : value_draw(pos.this_thread());

        // Step 3. Mate distance pruning. Even if we mate at the next move our score
        // would be at best mate_in(ss->ply+1), but if alpha is already bigger because
        // a shorter mate was found upward in the tree then there is no need to search
        // because we will never beat the current alpha. Same logic but with reversed
        // signs applies also in the opposite condition of being mated instead of giving
        // mate. In this case return a fail-high score.
        alpha = std::max(mated_in(ss->ply), alpha);
        beta = std::min(mate_in(ss->ply+1), beta);
        if (alpha >= beta)
            return alpha;
    }

    assert(0 <= ss->ply && ss->ply < MAX_PLY);

    (ss+1)->ply = ss->ply + 1;
    (ss+1)->ttPv = false;
    (ss+1)->excludedMove = bestMove = MOVE_NONE;
    (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
    Square prevSq = to_sq((ss-1)->currentMove);

    // Initialize statScore to zero for the grandchildren of the current position.
    // So statScore is shared between all grandchildren and only the first grandchild
    // starts with statScore = 0. Later grandchildren start with the last calculated
    // statScore of the previous grandchild. This influences the reduction rules in
    // LMR which are based on the statScore of parent position.
    if (rootNode)
        (ss+4)->statScore = 0;
    else
        (ss+2)->statScore = 0;

    // Step 4. Transposition table lookup. We don't want the score of a partial
    // search to overwrite a previous full search TT value, so we use a different
    // position key in case of an excluded move.
    excludedMove = ss->excludedMove;
    posKey = excludedMove == MOVE_NONE ? pos.key() : pos.key() ^ make_key(excludedMove);
    tte = TT.probe(posKey, ttHit);
    ttValue = ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
    ttMove =  rootNode ? thisThread->rootMoves[thisThread->pvIdx].pv[0]
            : ttHit    ? tte->move() : MOVE_NONE;
    if (!excludedMove)
        ss->ttPv = PvNode || (ttHit && tte->is_pv());
    formerPv = ss->ttPv && !PvNode;

    if (   ss->ttPv
        && depth > 12
        && ss->ply - 1 < MAX_LPH
        && !priorCapture
        && is_ok((ss-1)->currentMove))
        thisThread->lowPlyHistory[ss->ply - 1][from_to((ss-1)->currentMove)] << stat_bonus(depth - 5);

    // thisThread->ttHitAverage can be used to approximate the running average of ttHit
    thisThread->ttHitAverage =   (TtHitAverageWindow - 1) * thisThread->ttHitAverage / TtHitAverageWindow
                                + TtHitAverageResolution * ttHit;

    // At non-PV nodes we check for an early TT cutoff
    if (  !PvNode
        && ttHit
        && tte->depth() >= depth
        && ttValue != VALUE_NONE // Possible in case of TT access race
        && (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
                            : (tte->bound() & BOUND_UPPER)))
    {
        // If ttMove is quiet, update move sorting heuristics on TT hit
        if (ttMove)
        {
            if (ttValue >= beta)
            {
                if (!pos.capture_or_promotion(ttMove))
                    update_quiet_stats(pos, ss, ttMove, stat_bonus(depth), depth);

                // Extra penalty for early quiet moves of the previous ply
                if ((ss-1)->moveCount <= 2 && !priorCapture)
                    update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + 1));
            }
            // Penalty for a quiet ttMove that fails low
            else if (!pos.capture_or_promotion(ttMove))
            {
                int penalty = -stat_bonus(depth);
                thisThread->mainHistory[us][from_to(ttMove)] << penalty;
                update_continuation_histories(ss, pos.moved_piece(ttMove), to_sq(ttMove), penalty);
            }
        }

        if (pos.rule50_count() < 90)
            return ttValue;
    }

    // Step 5. Tablebases probe
    if (!rootNode && TB::Cardinality)
    {
        int piecesCount = pos.count<ALL_PIECES>();

        if (    piecesCount <= TB::Cardinality
            && (piecesCount <  TB::Cardinality || depth >= TB::ProbeDepth)
            &&  pos.rule50_count() == 0
            && !pos.can_castle(ANY_CASTLING))
        {
            TB::ProbeState err;
            TB::WDLScore wdl = Tablebases::probe_wdl(pos, &err);

            // Force check of time on the next occasion
            if (thisThread == Threads.main())
                static_cast<MainThread*>(thisThread)->callsCnt = 0;

            if (err != TB::ProbeState::FAIL)
            {
                thisThread->tbHits.fetch_add(1, std::memory_order_relaxed);

                int drawScore = TB::UseRule50 ? 1 : 0;

                // use the range VALUE_MATE_IN_MAX_PLY to VALUE_TB_WIN_IN_MAX_PLY to score
                value =  wdl < -drawScore ? VALUE_MATED_IN_MAX_PLY + ss->ply + 1
                       : wdl >  drawScore ? VALUE_MATE_IN_MAX_PLY - ss->ply - 1
                                          : VALUE_DRAW + 2 * wdl * drawScore;

                Bound b =  wdl < -drawScore ? BOUND_UPPER
                         : wdl >  drawScore ? BOUND_LOWER : BOUND_EXACT;

                if (    b == BOUND_EXACT
                    || (b == BOUND_LOWER ? value >= beta : value <= alpha))
                {
                    tte->save(posKey, value_to_tt(value, ss->ply), ss->ttPv, b,
                              std::min(MAX_PLY - 1, depth + 6),
                              MOVE_NONE, VALUE_NONE);

                    return value;
                }

                if (PvNode)
                {
                    if (b == BOUND_LOWER)
                        bestValue = value, alpha = std::max(alpha, bestValue);
                    else
                        maxValue = value;
                }
            }
        }
    }

    CapturePieceToHistory& captureHistory = thisThread->captureHistory;

    // Step 6. Static evaluation of the position
    if (ss->inCheck)
    {
        // Skip early pruning when in check
        ss->staticEval = eval = VALUE_NONE;
        improving = false;
        goto moves_loop;
    }
    else if (ttHit)
    {
        // Never assume anything about values stored in TT
        ss->staticEval = eval = tte->eval();
        if (eval == VALUE_NONE)
            ss->staticEval = eval = evaluate(pos);

        if (eval == VALUE_DRAW)
            eval = value_draw(thisThread);

        // Can ttValue be used as a better position evaluation?
        if (    ttValue != VALUE_NONE
            && (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER)))
            eval = ttValue;
    }
    else
    {
        if ((ss-1)->currentMove != MOVE_NULL)
            ss->staticEval = eval = evaluate(pos);
        else
            ss->staticEval = eval = -(ss-1)->staticEval + 2 * Tempo;

        tte->save(posKey, VALUE_NONE, ss->ttPv, BOUND_NONE, DEPTH_NONE, MOVE_NONE, eval);
    }

    // Step 7. Razoring (~1 Elo)
    if (   !rootNode // The required rootNode PV handling is not available in qsearch
        &&  depth == 1
        &&  eval <= alpha - RazorMargin)
        return qsearch<NT>(pos, ss, alpha, beta);

    improving =  (ss-2)->staticEval == VALUE_NONE
               ? ss->staticEval > (ss-4)->staticEval || (ss-4)->staticEval == VALUE_NONE
               : ss->staticEval > (ss-2)->staticEval;

    // Step 8. Futility pruning: child node (~50 Elo)
    if (   !PvNode
        &&  depth < 8
        &&  eval - futility_margin(depth, improving) >= beta
        &&  eval < VALUE_KNOWN_WIN) // Do not return unproven wins
        return eval;

    // Step 9. Null move search with verification search (~40 Elo)
    if (   !PvNode
        && (ss-1)->currentMove != MOVE_NULL
        && (ss-1)->statScore < 22977
        &&  eval >= beta
        &&  eval >= ss->staticEval
        &&  ss->staticEval >= beta - 30 * depth - 28 * improving + 84 * ss->ttPv + 182
        && !excludedMove
        &&  pos.non_pawn_material(us)
        && (ss->ply >= thisThread->nmpMinPly || us != thisThread->nmpColor))
    {
        assert(eval - beta >= 0);

        // Null move dynamic reduction based on depth and value
        Depth R = (817 + 71 * depth) / 213 + std::min(int(eval - beta) / 192, 3);

        ss->currentMove = MOVE_NULL;
        ss->continuationHistory = &thisThread->continuationHistory[0][0][NO_PIECE][0];

        pos.do_null_move(st);

        Value nullValue = -search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode);

        pos.undo_null_move();

        if (nullValue >= beta)
        {
            // Do not return unproven mate or TB scores
            if (nullValue >= VALUE_TB_WIN_IN_MAX_PLY)
                nullValue = beta;

            if (thisThread->nmpMinPly || (abs(beta) < VALUE_KNOWN_WIN && depth < 13))
                return nullValue;

            assert(!thisThread->nmpMinPly); // Recursive verification is not allowed

            // Do verification search at high depths, with null move pruning disabled
            // for us, until ply exceeds nmpMinPly.
            thisThread->nmpMinPly = ss->ply + 3 * (depth-R) / 4;
            thisThread->nmpColor = us;

            Value v = search<NonPV>(pos, ss, beta-1, beta, depth-R, false);

            thisThread->nmpMinPly = 0;

            if (v >= beta)
                return nullValue;
        }
    }

    probCutBeta = beta + 176 - 49 * improving;

    // Step 10. ProbCut (~10 Elo)
    // If we have a good enough capture and a reduced search returns a value
    // much above beta, we can (almost) safely prune the previous move.
    if (   !PvNode
        &&  depth > 4
        &&  abs(beta) < VALUE_TB_WIN_IN_MAX_PLY
        // if value from transposition table is lower than probCutBeta, don't attempt probCut
        // there and in further interactions with transposition table cutoff depth is set to depth - 3
        // because probCut search has depth set to depth - 4 but we also do a move before it
        // so effective depth is equal to depth - 3
        && !(   ttHit
             && tte->depth() >= depth - 3
             && ttValue != VALUE_NONE
             && ttValue < probCutBeta))
    {
        // if ttMove is a capture and value from transposition table is good enough produce probCut
        // cutoff without digging into actual probCut search
        if (   ttHit
            && tte->depth() >= depth - 3
            && ttValue != VALUE_NONE
            && ttValue >= probCutBeta
            && ttMove
            && pos.capture_or_promotion(ttMove))
            return probCutBeta;

        assert(probCutBeta < VALUE_INFINITE);
        MovePicker mp(pos, ttMove, probCutBeta - ss->staticEval, &captureHistory);
        int probCutCount = 0;
        bool ttPv = ss->ttPv;
        ss->ttPv = false;

        while (   (move = mp.next_move()) != MOVE_NONE
               && probCutCount < 2 + 2 * cutNode)
            if (move != excludedMove && pos.legal(move))
            {
                assert(pos.capture_or_promotion(move));
                assert(depth >= 5);

                captureOrPromotion = true;
                probCutCount++;

                ss->currentMove = move;
                ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck]
                                                                          [captureOrPromotion]
                                                                          [pos.moved_piece(move)]
                                                                          [to_sq(move)];

                pos.do_move(move, st);

                // Perform a preliminary qsearch to verify that the move holds
                value = -qsearch<NonPV>(pos, ss+1, -probCutBeta, -probCutBeta+1);

                // If the qsearch held, perform the regular search
                if (value >= probCutBeta)
                    value = -search<NonPV>(pos, ss+1, -probCutBeta, -probCutBeta+1, depth - 4, !cutNode);

                pos.undo_move(move);

                if (value >= probCutBeta)
                {
                    // if transposition table doesn't have equal or more deep info write probCut data into it
                    if ( !(ttHit
                       && tte->depth() >= depth - 3
                       && ttValue != VALUE_NONE))
                        tte->save(posKey, value_to_tt(value, ss->ply), ttPv,
                            BOUND_LOWER,
                            depth - 3, move, ss->staticEval);
                    return value;
                }
            }
         ss->ttPv = ttPv;
    }

    // Step 11. If the position is not in TT, decrease depth by 2
    if (   PvNode
        && depth >= 6
        && !ttMove)
        depth -= 2;

moves_loop: // When in check, search starts from here

    const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory,
                                          nullptr                   , (ss-4)->continuationHistory,
                                          nullptr                   , (ss-6)->continuationHistory };

    Move countermove = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq];

    MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory,
                                      &thisThread->lowPlyHistory,
                                      &captureHistory,
                                      contHist,
                                      countermove,
                                      ss->killers,
                                      ss->ply);

    value = bestValue;
    singularQuietLMR = moveCountPruning = false;
    ttCapture = ttMove && pos.capture_or_promotion(ttMove);

    // Mark this node as being searched
    ThreadHolding th(thisThread, posKey, ss->ply);

    // Step 12. Loop through all pseudo-legal moves until no moves remain
    // or a beta cutoff occurs.
    while ((move = mp.next_move(moveCountPruning)) != MOVE_NONE)
    {
      assert(is_ok(move));

      if (move == excludedMove)
          continue;

      // At root obey the "searchmoves" option and skip moves not listed in Root
      // Move List. As a consequence any illegal move is also skipped. In MultiPV
      // mode we also skip PV moves which have been already searched and those
      // of lower "TB rank" if we are in a TB root position.
      if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->pvIdx,
                                  thisThread->rootMoves.begin() + thisThread->pvLast, move))
          continue;

      // Check for legality
      if (!rootNode && !pos.legal(move))
          continue;

      ss->moveCount = ++moveCount;

      if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000)
          sync_cout << "info depth " << depth
                    << " currmove " << UCI::move(move, pos.is_chess960())
                    << " currmovenumber " << moveCount + thisThread->pvIdx << sync_endl;
      if (PvNode)
          (ss+1)->pv = nullptr;

      extension = 0;
      captureOrPromotion = pos.capture_or_promotion(move);
      movedPiece = pos.moved_piece(move);
      givesCheck = pos.gives_check(move);

      // Calculate new depth for this move
      newDepth = depth - 1;

      // Step 13. Pruning at shallow depth (~200 Elo)
      if (  !rootNode
          && pos.non_pawn_material(us)
          && bestValue > VALUE_TB_LOSS_IN_MAX_PLY)
      {
          // Skip quiet moves if movecount exceeds our FutilityMoveCount threshold
          moveCountPruning = moveCount >= futility_move_count(improving, depth);

          // Reduced depth of the next LMR search
          int lmrDepth = std::max(newDepth - reduction(improving, depth, moveCount), 0);

          if (   !captureOrPromotion
              && !givesCheck)
          {
              // Countermoves based pruning (~20 Elo)
              if (   lmrDepth < 4 + ((ss-1)->statScore > 0 || (ss-1)->moveCount == 1)
                  && (*contHist[0])[movedPiece][to_sq(move)] < CounterMovePruneThreshold
                  && (*contHist[1])[movedPiece][to_sq(move)] < CounterMovePruneThreshold)
                  continue;

              // Futility pruning: parent node (~5 Elo)
              if (   lmrDepth < 7
                  && !ss->inCheck
                  && ss->staticEval + 283 + 170 * lmrDepth <= alpha
                  &&  (*contHist[0])[movedPiece][to_sq(move)]
                    + (*contHist[1])[movedPiece][to_sq(move)]
                    + (*contHist[3])[movedPiece][to_sq(move)]
                    + (*contHist[5])[movedPiece][to_sq(move)] / 2 < 27376)
                  continue;

              // Prune moves with negative SEE (~20 Elo)
              if (!pos.see_ge(move, Value(-(29 - std::min(lmrDepth, 18)) * lmrDepth * lmrDepth)))
                  continue;
          }
          else
          {
              // Capture history based pruning when the move doesn't give check
              if (   !givesCheck
                  && lmrDepth < 1
                  && captureHistory[movedPiece][to_sq(move)][type_of(pos.piece_on(to_sq(move)))] < 0)
                  continue;

              // Futility pruning for captures
              if (   !givesCheck
                  && lmrDepth < 6
                  && !(PvNode && abs(bestValue) < 2)
                  && PieceValue[MG][type_of(movedPiece)] >= PieceValue[MG][type_of(pos.piece_on(to_sq(move)))]
                  && !ss->inCheck
                  && ss->staticEval + 169 + 244 * lmrDepth
                     + PieceValue[MG][type_of(pos.piece_on(to_sq(move)))] <= alpha)
                  continue;

              // See based pruning
              if (!pos.see_ge(move, Value(-221) * depth)) // (~25 Elo)
                  continue;
          }
      }

      // Step 14. Extensions (~75 Elo)

      // Singular extension search (~70 Elo). If all moves but one fail low on a
      // search of (alpha-s, beta-s), and just one fails high on (alpha, beta),
      // then that move is singular and should be extended. To verify this we do
      // a reduced search on all the other moves but the ttMove and if the
      // result is lower than ttValue minus a margin, then we will extend the ttMove.
      if (    depth >= 7
          &&  move == ttMove
          && !rootNode
          && !excludedMove // Avoid recursive singular search
       /* &&  ttValue != VALUE_NONE Already implicit in the next condition */
          &&  abs(ttValue) < VALUE_KNOWN_WIN
          && (tte->bound() & BOUND_LOWER)
          &&  tte->depth() >= depth - 3)
      {
          Value singularBeta = ttValue - ((formerPv + 4) * depth) / 2;
          Depth singularDepth = (depth - 1 + 3 * formerPv) / 2;
          ss->excludedMove = move;
          value = search<NonPV>(pos, ss, singularBeta - 1, singularBeta, singularDepth, cutNode);
          ss->excludedMove = MOVE_NONE;

          if (value < singularBeta)
          {
              extension = 1;
              singularQuietLMR = !ttCapture;
          }

          // Multi-cut pruning
          // Our ttMove is assumed to fail high, and now we failed high also on a reduced
          // search without the ttMove. So we assume this expected Cut-node is not singular,
          // that multiple moves fail high, and we can prune the whole subtree by returning
          // a soft bound.
          else if (singularBeta >= beta)
              return singularBeta;

          // If the eval of ttMove is greater than beta we try also if there is another
          // move that pushes it over beta, if so also produce a cutoff.
          else if (ttValue >= beta)
          {
              ss->excludedMove = move;
              value = search<NonPV>(pos, ss, beta - 1, beta, (depth + 3) / 2, cutNode);
              ss->excludedMove = MOVE_NONE;

              if (value >= beta)
                  return beta;
          }
      }

      // Check extension (~2 Elo)
      else if (    givesCheck
               && (pos.is_discovery_check_on_king(~us, move) || pos.see_ge(move)))
          extension = 1;

      // Last captures extension
      else if (   PieceValue[EG][pos.captured_piece()] > PawnValueEg
               && pos.non_pawn_material() <= 2 * RookValueMg)
          extension = 1;

      // Castling extension
      if (   type_of(move) == CASTLING
          && popcount(pos.pieces(us) & ~pos.pieces(PAWN) & (to_sq(move) & KingSide ? KingSide : QueenSide)) <= 2)
          extension = 1;

      // Late irreversible move extension
      if (   move == ttMove
          && pos.rule50_count() > 80
          && (captureOrPromotion || type_of(movedPiece) == PAWN))
          extension = 2;

      // Add extension to new depth
      newDepth += extension;

      // Speculative prefetch as early as possible
      prefetch(TT.first_entry(pos.key_after(move)));

      // Update the current move (this must be done after singular extension search)
      ss->currentMove = move;
      ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck]
                                                                [captureOrPromotion]
                                                                [movedPiece]
                                                                [to_sq(move)];

      // Step 15. Make the move
      pos.do_move(move, st, givesCheck);

      // Step 16. Reduced depth search (LMR, ~200 Elo). If the move fails high it will be
      // re-searched at full depth.
      if (    depth >= 3
          &&  moveCount > 1 + 2 * rootNode + 2 * (PvNode && abs(bestValue) < 2)
          && (  !captureOrPromotion
              || moveCountPruning
              || ss->staticEval + PieceValue[EG][pos.captured_piece()] <= alpha
              || cutNode
              || thisThread->ttHitAverage < 427 * TtHitAverageResolution * TtHitAverageWindow / 1024))
      {
          Depth r = reduction(improving, depth, moveCount);

          // Decrease reduction at non-check cut nodes for second move at low depths
          if (   cutNode
              && depth <= 10
              && moveCount <= 2
              && !ss->inCheck)
              r--;

          // Decrease reduction if the ttHit running average is large
          if (thisThread->ttHitAverage > 509 * TtHitAverageResolution * TtHitAverageWindow / 1024)
              r--;

          // Reduction if other threads are searching this position
          if (th.marked())
              r++;

          // Decrease reduction if position is or has been on the PV (~10 Elo)
          if (ss->ttPv)
              r -= 2;

          if (moveCountPruning && !formerPv)
              r++;

          // Decrease reduction if opponent's move count is high (~5 Elo)
          if ((ss-1)->moveCount > 13)
              r--;

          // Decrease reduction if ttMove has been singularly extended (~3 Elo)
          if (singularQuietLMR)
              r -= 1 + formerPv;

          if (!captureOrPromotion)
          {
              // Increase reduction if ttMove is a capture (~5 Elo)
              if (ttCapture)
                  r++;

              // Increase reduction for cut nodes (~10 Elo)
              if (cutNode)
                  r += 2;

              // Decrease reduction for moves that escape a capture. Filter out
              // castling moves, because they are coded as "king captures rook" and
              // hence break make_move(). (~2 Elo)
              else if (    type_of(move) == NORMAL
                       && !pos.see_ge(reverse_move(move)))
                  r -= 2 + ss->ttPv - (type_of(movedPiece) == PAWN);

              ss->statScore =  thisThread->mainHistory[us][from_to(move)]
                             + (*contHist[0])[movedPiece][to_sq(move)]
                             + (*contHist[1])[movedPiece][to_sq(move)]
                             + (*contHist[3])[movedPiece][to_sq(move)]
                             - 5287;

              // Decrease/increase reduction by comparing opponent's stat score (~10 Elo)
              if (ss->statScore >= -106 && (ss-1)->statScore < -104)
                  r--;

              else if ((ss-1)->statScore >= -119 && ss->statScore < -140)
                  r++;

              // Decrease/increase reduction for moves with a good/bad history (~30 Elo)
              r -= ss->statScore / 14884;
          }
          else
          {
            // Increase reduction for captures/promotions if late move and at low depth
            if (depth < 8 && moveCount > 2)
                r++;

            // Unless giving check, this capture is likely bad
            if (   !givesCheck
                && ss->staticEval + PieceValue[EG][pos.captured_piece()] + 213 * depth <= alpha)
                r++;
          }

          Depth d = std::clamp(newDepth - r, 1, newDepth);

          value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true);

          doFullDepthSearch = value > alpha && d != newDepth;

          didLMR = true;
      }
      else
      {
          doFullDepthSearch = !PvNode || moveCount > 1;

          didLMR = false;
      }

      // Step 17. Full depth search when LMR is skipped or fails high
      if (doFullDepthSearch)
      {
          value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode);

          if (didLMR && !captureOrPromotion)
          {
              int bonus = value > alpha ?  stat_bonus(newDepth)
                                        : -stat_bonus(newDepth);

              if (move == ss->killers[0])
                  bonus += bonus / 4;

              update_continuation_histories(ss, movedPiece, to_sq(move), bonus);
          }
      }

      // For PV nodes only, do a full PV search on the first move or after a fail
      // high (in the latter case search only if value < beta), otherwise let the
      // parent node fail low with value <= alpha and try another move.
      if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta))))
      {
          (ss+1)->pv = pv;
          (ss+1)->pv[0] = MOVE_NONE;

          value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, false);
      }

      // Step 18. Undo move
      pos.undo_move(move);

      assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);

      // Step 19. Check for a new best move
      // Finished searching the move. If a stop occurred, the return value of
      // the search cannot be trusted, and we return immediately without
      // updating best move, PV and TT.
      if (Threads.stop.load(std::memory_order_relaxed))
          return VALUE_ZERO;

      if (rootNode)
      {
          RootMove& rm = *std::find(thisThread->rootMoves.begin(),
                                    thisThread->rootMoves.end(), move);

          // PV move or new best move?
          if (moveCount == 1 || value > alpha)
          {
              rm.score = value;
              rm.selDepth = thisThread->selDepth;
              rm.pv.resize(1);

              assert((ss+1)->pv);

              for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m)
                  rm.pv.push_back(*m);

              // We record how often the best move has been changed in each
              // iteration. This information is used for time management: when
              // the best move changes frequently, we allocate some more time.
              if (moveCount > 1)
                  ++thisThread->bestMoveChanges;
          }
          else
              // All other moves but the PV are set to the lowest value: this
              // is not a problem when sorting because the sort is stable and the
              // move position in the list is preserved - just the PV is pushed up.
              rm.score = -VALUE_INFINITE;
      }

      if (value > bestValue)
      {
          bestValue = value;

          if (value > alpha)
          {
              bestMove = move;

              if (PvNode && !rootNode) // Update pv even in fail-high case
                  update_pv(ss->pv, move, (ss+1)->pv);

              if (PvNode && value < beta) // Update alpha! Always alpha < beta
                  alpha = value;
              else
              {
                  assert(value >= beta); // Fail high
                  ss->statScore = 0;
                  break;
              }
          }
      }

      if (move != bestMove)
      {
          if (captureOrPromotion && captureCount < 32)
              capturesSearched[captureCount++] = move;

          else if (!captureOrPromotion && quietCount < 64)
              quietsSearched[quietCount++] = move;
      }
    }

    // The following condition would detect a stop only after move loop has been
    // completed. But in this case bestValue is valid because we have fully
    // searched our subtree, and we can anyhow save the result in TT.
    /*
       if (Threads.stop)
        return VALUE_DRAW;
    */

    // Step 20. Check for mate and stalemate
    // All legal moves have been searched and if there are no legal moves, it
    // must be a mate or a stalemate. If we are in a singular extension search then
    // return a fail low score.

    assert(moveCount || !ss->inCheck || excludedMove || !MoveList<LEGAL>(pos).size());

    if (!moveCount)
        bestValue = excludedMove ? alpha
                   :     ss->inCheck ? mated_in(ss->ply) : VALUE_DRAW;

    else if (bestMove)
        update_all_stats(pos, ss, bestMove, bestValue, beta, prevSq,
                         quietsSearched, quietCount, capturesSearched, captureCount, depth);

    // Bonus for prior countermove that caused the fail low
    else if (   (depth >= 3 || PvNode)
             && !priorCapture)
        update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, stat_bonus(depth));

    if (PvNode)
        bestValue = std::min(bestValue, maxValue);

    // If no good move is found and the previous position was ttPv, then the previous
    // opponent move is probably good and the new position is added to the search tree.
    if (bestValue <= alpha)
        ss->ttPv = ss->ttPv || ((ss-1)->ttPv && depth > 3);
    // Otherwise, a counter move has been found and if the position is the last leaf
    // in the search tree, remove the position from the search tree.
    else if (depth > 3)
        ss->ttPv = ss->ttPv && (ss+1)->ttPv;

    if (!excludedMove && !(rootNode && thisThread->pvIdx))
        tte->save(posKey, value_to_tt(bestValue, ss->ply), ss->ttPv,
                  bestValue >= beta ? BOUND_LOWER :
                  PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
                  depth, bestMove, ss->staticEval);

    assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);

    return bestValue;
  }


  // qsearch() is the quiescence search function, which is called by the main search
  // function with zero depth, or recursively with further decreasing depth per call.
  template <NodeType NT>
  Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {

    constexpr bool PvNode = NT == PV;

    assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
    assert(PvNode || (alpha == beta - 1));
    assert(depth <= 0);

    Move pv[MAX_PLY+1];
    StateInfo st;
    TTEntry* tte;
    Key posKey;
    Move ttMove, move, bestMove;
    Depth ttDepth;
    Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
    bool ttHit, pvHit, givesCheck, captureOrPromotion;
    int moveCount;

    if (PvNode)
    {
        oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves
        (ss+1)->pv = pv;
        ss->pv[0] = MOVE_NONE;
    }

    Thread* thisThread = pos.this_thread();
    (ss+1)->ply = ss->ply + 1;
    bestMove = MOVE_NONE;
    ss->inCheck = pos.checkers();
    moveCount = 0;

    // Check for an immediate draw or maximum ply reached
    if (   pos.is_draw(ss->ply)
        || ss->ply >= MAX_PLY)
        return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos) : VALUE_DRAW;

    assert(0 <= ss->ply && ss->ply < MAX_PLY);

    // Decide whether or not to include checks: this fixes also the type of
    // TT entry depth that we are going to use. Note that in qsearch we use
    // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
    ttDepth = ss->inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
                                                  : DEPTH_QS_NO_CHECKS;
    // Transposition table lookup
    posKey = pos.key();
    tte = TT.probe(posKey, ttHit);
    ttValue = ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
    ttMove = ttHit ? tte->move() : MOVE_NONE;
    pvHit = ttHit && tte->is_pv();

    if (  !PvNode
        && ttHit
        && tte->depth() >= ttDepth
        && ttValue != VALUE_NONE // Only in case of TT access race
        && (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
                            : (tte->bound() & BOUND_UPPER)))
        return ttValue;

    // Evaluate the position statically
    if (ss->inCheck)
    {
        ss->staticEval = VALUE_NONE;
        bestValue = futilityBase = -VALUE_INFINITE;
    }
    else
    {
        if (ttHit)
        {
            // Never assume anything about values stored in TT
            if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE)
                ss->staticEval = bestValue = evaluate(pos);

            // Can ttValue be used as a better position evaluation?
            if (    ttValue != VALUE_NONE
                && (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER)))
                bestValue = ttValue;
        }
        else
            ss->staticEval = bestValue =
            (ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
                                             : -(ss-1)->staticEval + 2 * Tempo;

        // Stand pat. Return immediately if static value is at least beta
        if (bestValue >= beta)
        {
            if (!ttHit)
                tte->save(posKey, value_to_tt(bestValue, ss->ply), false, BOUND_LOWER,
                          DEPTH_NONE, MOVE_NONE, ss->staticEval);

            return bestValue;
        }

        if (PvNode && bestValue > alpha)
            alpha = bestValue;

        futilityBase = bestValue + 145;
    }

    const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory,
                                          nullptr                   , (ss-4)->continuationHistory,
                                          nullptr                   , (ss-6)->continuationHistory };

    // Initialize a MovePicker object for the current position, and prepare
    // to search the moves. Because the depth is <= 0 here, only captures,
    // queen and checking knight promotions, and other checks(only if depth >= DEPTH_QS_CHECKS)
    // will be generated.
    MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory,
                                      &thisThread->captureHistory,
                                      contHist,
                                      to_sq((ss-1)->currentMove));

    // Loop through the moves until no moves remain or a beta cutoff occurs
    while ((move = mp.next_move()) != MOVE_NONE)
    {
      assert(is_ok(move));

      givesCheck = pos.gives_check(move);
      captureOrPromotion = pos.capture_or_promotion(move);

      moveCount++;

      // Futility pruning
      if (   !ss->inCheck
          && !givesCheck
          &&  futilityBase > -VALUE_KNOWN_WIN
          && !pos.advanced_pawn_push(move))
      {
          assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push

          // moveCount pruning
          if (moveCount > 2)
              continue;

          futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))];

          if (futilityValue <= alpha)
          {
              bestValue = std::max(bestValue, futilityValue);
              continue;
          }

          if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1))
          {
              bestValue = std::max(bestValue, futilityBase);
              continue;
          }
      }

      // Do not search moves with negative SEE values
      if (!ss->inCheck && !pos.see_ge(move))
          continue;

      // Speculative prefetch as early as possible
      prefetch(TT.first_entry(pos.key_after(move)));

      // Check for legality just before making the move
      if (!pos.legal(move))
      {
          moveCount--;
          continue;
      }

      ss->currentMove = move;
      ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck]
                                                                [captureOrPromotion]
                                                                [pos.moved_piece(move)]
                                                                [to_sq(move)];

      if (  !captureOrPromotion
          && moveCount
          && (*contHist[0])[pos.moved_piece(move)][to_sq(move)] < CounterMovePruneThreshold
          && (*contHist[1])[pos.moved_piece(move)][to_sq(move)] < CounterMovePruneThreshold)
          continue;

      // Make and search the move
      pos.do_move(move, st, givesCheck);
      value = -qsearch<NT>(pos, ss+1, -beta, -alpha, depth - 1);
      pos.undo_move(move);

      assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);

      // Check for a new best move
      if (value > bestValue)
      {
          bestValue = value;

          if (value > alpha)
          {
              bestMove = move;

              if (PvNode) // Update pv even in fail-high case
                  update_pv(ss->pv, move, (ss+1)->pv);

              if (PvNode && value < beta) // Update alpha here!
                  alpha = value;
              else
                  break; // Fail high
          }
       }
    }

    // All legal moves have been searched. A special case: if we're in check
    // and no legal moves were found, it is checkmate.
    if (ss->inCheck && bestValue == -VALUE_INFINITE)
        return mated_in(ss->ply); // Plies to mate from the root

    tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit,
              bestValue >= beta ? BOUND_LOWER :
              PvNode && bestValue > oldAlpha  ? BOUND_EXACT : BOUND_UPPER,
              ttDepth, bestMove, ss->staticEval);

    assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);

    return bestValue;
  }


  // value_to_tt() adjusts a mate or TB score from "plies to mate from the root" to
  // "plies to mate from the current position". Standard scores are unchanged.
  // The function is called before storing a value in the transposition table.

  Value value_to_tt(Value v, int ply) {

    assert(v != VALUE_NONE);

    return  v >= VALUE_TB_WIN_IN_MAX_PLY  ? v + ply
          : v <= VALUE_TB_LOSS_IN_MAX_PLY ? v - ply : v;
  }


  // value_from_tt() is the inverse of value_to_tt(): it adjusts a mate or TB score
  // from the transposition table (which refers to the plies to mate/be mated from
  // current position) to "plies to mate/be mated (TB win/loss) from the root". However,
  // for mate scores, to avoid potentially false mate scores related to the 50 moves rule
  // and the graph history interaction, we return an optimal TB score instead.

  Value value_from_tt(Value v, int ply, int r50c) {

    if (v == VALUE_NONE)
        return VALUE_NONE;

    if (v >= VALUE_TB_WIN_IN_MAX_PLY)  // TB win or better
    {
        if (v >= VALUE_MATE_IN_MAX_PLY && VALUE_MATE - v > 99 - r50c)
            return VALUE_MATE_IN_MAX_PLY - 1; // do not return a potentially false mate score

        return v - ply;
    }

    if (v <= VALUE_TB_LOSS_IN_MAX_PLY) // TB loss or worse
    {
        if (v <= VALUE_MATED_IN_MAX_PLY && VALUE_MATE + v > 99 - r50c)
            return VALUE_MATED_IN_MAX_PLY + 1; // do not return a potentially false mate score

        return v + ply;
    }

    return v;
  }


  // update_pv() adds current move and appends child pv[]

  void update_pv(Move* pv, Move move, Move* childPv) {

    for (*pv++ = move; childPv && *childPv != MOVE_NONE; )
        *pv++ = *childPv++;
    *pv = MOVE_NONE;
  }


  // update_all_stats() updates stats at the end of search() when a bestMove is found

  void update_all_stats(const Position& pos, Stack* ss, Move bestMove, Value bestValue, Value beta, Square prevSq,
                        Move* quietsSearched, int quietCount, Move* capturesSearched, int captureCount, Depth depth) {

    int bonus1, bonus2;
    Color us = pos.side_to_move();
    Thread* thisThread = pos.this_thread();
    CapturePieceToHistory& captureHistory = thisThread->captureHistory;
    Piece moved_piece = pos.moved_piece(bestMove);
    PieceType captured = type_of(pos.piece_on(to_sq(bestMove)));

    bonus1 = stat_bonus(depth + 1);
    bonus2 = bestValue > beta + PawnValueMg ? bonus1               // larger bonus
                                            : stat_bonus(depth);   // smaller bonus

    if (!pos.capture_or_promotion(bestMove))
    {
        update_quiet_stats(pos, ss, bestMove, bonus2, depth);

        // Decrease all the non-best quiet moves
        for (int i = 0; i < quietCount; ++i)
        {
            thisThread->mainHistory[us][from_to(quietsSearched[i])] << -bonus2;
            update_continuation_histories(ss, pos.moved_piece(quietsSearched[i]), to_sq(quietsSearched[i]), -bonus2);
        }
    }
    else
        captureHistory[moved_piece][to_sq(bestMove)][captured] << bonus1;

    // Extra penalty for a quiet TT or main killer move in previous ply when it gets refuted
    if (   ((ss-1)->moveCount == 1 || ((ss-1)->currentMove == (ss-1)->killers[0]))
        && !pos.captured_piece())
            update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -bonus1);

    // Decrease all the non-best capture moves
    for (int i = 0; i < captureCount; ++i)
    {
        moved_piece = pos.moved_piece(capturesSearched[i]);
        captured = type_of(pos.piece_on(to_sq(capturesSearched[i])));
        captureHistory[moved_piece][to_sq(capturesSearched[i])][captured] << -bonus1;
    }
  }


  // update_continuation_histories() updates histories of the move pairs formed
  // by moves at ply -1, -2, -4, and -6 with current move.

  void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus) {

    for (int i : {1, 2, 4, 6})
    {
        if (ss->inCheck && i > 2)
            break;
        if (is_ok((ss-i)->currentMove))
            (*(ss-i)->continuationHistory)[pc][to] << bonus;
    }
  }


  // update_quiet_stats() updates move sorting heuristics

  void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus, int depth) {

    if (ss->killers[0] != move)
    {
        ss->killers[1] = ss->killers[0];
        ss->killers[0] = move;
    }

    Color us = pos.side_to_move();
    Thread* thisThread = pos.this_thread();
    thisThread->mainHistory[us][from_to(move)] << bonus;
    update_continuation_histories(ss, pos.moved_piece(move), to_sq(move), bonus);

    if (type_of(pos.moved_piece(move)) != PAWN)
        thisThread->mainHistory[us][from_to(reverse_move(move))] << -bonus;

    if (is_ok((ss-1)->currentMove))
    {
        Square prevSq = to_sq((ss-1)->currentMove);
        thisThread->counterMoves[pos.piece_on(prevSq)][prevSq] = move;
    }

    if (depth > 11 && ss->ply < MAX_LPH)
        thisThread->lowPlyHistory[ss->ply][from_to(move)] << stat_bonus(depth - 7);
  }

  // When playing with strength handicap, choose best move among a set of RootMoves
  // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.

  Move Skill::pick_best(size_t multiPV) {

    const RootMoves& rootMoves = Threads.main()->rootMoves;
    static PRNG rng(now()); // PRNG sequence should be non-deterministic

    // RootMoves are already sorted by score in descending order
    Value topScore = rootMoves[0].score;
    int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg);
    int weakness = 120 - 2 * level;
    int maxScore = -VALUE_INFINITE;

    // Choose best move. For each move score we add two terms, both dependent on
    // weakness. One is deterministic and bigger for weaker levels, and one is
    // random. Then we choose the move with the resulting highest score.
    for (size_t i = 0; i < multiPV; ++i)
    {
        // This is our magic formula
        int push = (  weakness * int(topScore - rootMoves[i].score)
                    + delta * (rng.rand<unsigned>() % weakness)) / 128;

        if (rootMoves[i].score + push >= maxScore)
        {
            maxScore = rootMoves[i].score + push;
            best = rootMoves[i].pv[0];
        }
    }

    return best;
  }

} // namespace


/// MainThread::check_time() is used to print debug info and, more importantly,
/// to detect when we are out of available time and thus stop the search.

void MainThread::check_time() {

  if (--callsCnt > 0)
      return;

  // When using nodes, ensure checking rate is not lower than 0.1% of nodes
  callsCnt = Limits.nodes ? std::min(1024, int(Limits.nodes / 1024)) : 1024;

  static TimePoint lastInfoTime = now();

  TimePoint elapsed = Time.elapsed();
  TimePoint tick = Limits.startTime + elapsed;

  if (tick - lastInfoTime >= 1000)
  {
      lastInfoTime = tick;
      dbg_print();
  }

  // We should not stop pondering until told so by the GUI
  if (ponder)
      return;

  if (   (Limits.use_time_management() && (elapsed > Time.maximum() - 10 || stopOnPonderhit))
      || (Limits.movetime && elapsed >= Limits.movetime)
      || (Limits.nodes && Threads.nodes_searched() >= (uint64_t)Limits.nodes))
      Threads.stop = true;
}


/// UCI::pv() formats PV information according to the UCI protocol. UCI requires
/// that all (if any) unsearched PV lines are sent using a previous search score.

string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {

  std::stringstream ss;
  TimePoint elapsed = Time.elapsed() + 1;
  const RootMoves& rootMoves = pos.this_thread()->rootMoves;
  size_t pvIdx = pos.this_thread()->pvIdx;
  size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size());
  uint64_t nodesSearched = Threads.nodes_searched();
  uint64_t tbHits = Threads.tb_hits() + (TB::RootInTB ? rootMoves.size() : 0);

  for (size_t i = 0; i < multiPV; ++i)
  {
      bool updated = rootMoves[i].score != -VALUE_INFINITE;

      if (depth == 1 && !updated && i > 0)
          continue;

      Depth d = updated ? depth : std::max(1, depth - 1);
      Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore;

      if (v == -VALUE_INFINITE)
          v = VALUE_ZERO;

      bool tb = TB::RootInTB && abs(v) < VALUE_MATE_IN_MAX_PLY;
      v = tb ? rootMoves[i].tbScore : v;

      if (ss.rdbuf()->in_avail()) // Not at first line
          ss << "\n";

      ss << "info"
         << " depth "    << d
         << " seldepth " << rootMoves[i].selDepth
         << " multipv "  << i + 1
         << " score "    << UCI::value(v);

      if (Options["UCI_ShowWDL"])
          ss << UCI::wdl(v, pos.game_ply());

      if (!tb && i == pvIdx)
          ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : "");

      ss << " nodes "    << nodesSearched
         << " nps "      << nodesSearched * 1000 / elapsed;

      if (elapsed > 1000) // Earlier makes little sense
          ss << " hashfull " << TT.hashfull();

      ss << " tbhits "   << tbHits
         << " time "     << elapsed
         << " pv";

      for (Move m : rootMoves[i].pv)
          ss << " " << UCI::move(m, pos.is_chess960());
  }

  return ss.str();
}


/// RootMove::extract_ponder_from_tt() is called in case we have no ponder move
/// before exiting the search, for instance, in case we stop the search during a
/// fail high at root. We try hard to have a ponder move to return to the GUI,
/// otherwise in case of 'ponder on' we have nothing to think on.

bool RootMove::extract_ponder_from_tt(Position& pos) {

    StateInfo st;
    bool ttHit;

    assert(pv.size() == 1);

    if (pv[0] == MOVE_NONE)
        return false;

    pos.do_move(pv[0], st);
    TTEntry* tte = TT.probe(pos.key(), ttHit);

    if (ttHit)
    {
        Move m = tte->move(); // Local copy to be SMP safe
        if (MoveList<LEGAL>(pos).contains(m))
            pv.push_back(m);
    }

    pos.undo_move(pv[0]);
    return pv.size() > 1;
}

void Tablebases::rank_root_moves(Position& pos, Search::RootMoves& rootMoves) {

    RootInTB = false;
    UseRule50 = bool(Options["Syzygy50MoveRule"]);
    ProbeDepth = int(Options["SyzygyProbeDepth"]);
    Cardinality = int(Options["SyzygyProbeLimit"]);
    bool dtz_available = true;

    // Tables with fewer pieces than SyzygyProbeLimit are searched with
    // ProbeDepth == DEPTH_ZERO
    if (Cardinality > MaxCardinality)
    {
        Cardinality = MaxCardinality;
        ProbeDepth = 0;
    }

    if (Cardinality >= popcount(pos.pieces()) && !pos.can_castle(ANY_CASTLING))
    {
        // Rank moves using DTZ tables
        RootInTB = root_probe(pos, rootMoves);

        if (!RootInTB)
        {
            // DTZ tables are missing; try to rank moves using WDL tables
            dtz_available = false;
            RootInTB = root_probe_wdl(pos, rootMoves);
        }
    }

    if (RootInTB)
    {
        // Sort moves according to TB rank
        std::stable_sort(rootMoves.begin(), rootMoves.end(),
                  [](const RootMove &a, const RootMove &b) { return a.tbRank > b.tbRank; } );

        // Probe during search only if DTZ is not available and we are winning
        if (dtz_available || rootMoves[0].tbScore <= VALUE_DRAW)
            Cardinality = 0;
    }
    else
    {
        // Clean up if root_probe() and root_probe_wdl() have failed
        for (auto& m : rootMoves)
            m.tbRank = 0;
    }
}