1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
|
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring> // For std::memset
#include <iostream>
#include <sstream>
#include "evaluate.h"
#include "misc.h"
#include "movegen.h"
#include "movepick.h"
#include "position.h"
#include "search.h"
#include "thread.h"
#include "timeman.h"
#include "tt.h"
#include "uci.h"
#include "syzygy/tbprobe.h"
namespace Search {
LimitsType Limits;
}
namespace Tablebases {
int Cardinality;
bool RootInTB;
bool UseRule50;
Depth ProbeDepth;
}
namespace TB = Tablebases;
using std::string;
using Eval::evaluate;
using namespace Search;
namespace {
// Different node types, used as a template parameter
enum NodeType { NonPV, PV };
constexpr uint64_t TtHitAverageWindow = 4096;
constexpr uint64_t TtHitAverageResolution = 1024;
// Razor and futility margins
constexpr int RazorMargin = 510;
Value futility_margin(Depth d, bool improving) {
return Value(223 * (d - improving));
}
// Reductions lookup table, initialized at startup
int Reductions[MAX_MOVES]; // [depth or moveNumber]
Depth reduction(bool i, Depth d, int mn) {
int r = Reductions[d] * Reductions[mn];
return (r + 509) / 1024 + (!i && r > 894);
}
constexpr int futility_move_count(bool improving, Depth depth) {
return (3 + depth * depth) / (2 - improving);
}
// History and stats update bonus, based on depth
int stat_bonus(Depth d) {
return d > 13 ? 29 : 17 * d * d + 134 * d - 134;
}
// Add a small random component to draw evaluations to avoid 3fold-blindness
Value value_draw(Thread* thisThread) {
return VALUE_DRAW + Value(2 * (thisThread->nodes & 1) - 1);
}
// Skill structure is used to implement strength limit
struct Skill {
explicit Skill(int l) : level(l) {}
bool enabled() const { return level < 20; }
bool time_to_pick(Depth depth) const { return depth == 1 + level; }
Move pick_best(size_t multiPV);
int level;
Move best = MOVE_NONE;
};
// Breadcrumbs are used to mark nodes as being searched by a given thread
struct Breadcrumb {
std::atomic<Thread*> thread;
std::atomic<Key> key;
};
std::array<Breadcrumb, 1024> breadcrumbs;
// ThreadHolding structure keeps track of which thread left breadcrumbs at the given
// node for potential reductions. A free node will be marked upon entering the moves
// loop by the constructor, and unmarked upon leaving that loop by the destructor.
struct ThreadHolding {
explicit ThreadHolding(Thread* thisThread, Key posKey, int ply) {
location = ply < 8 ? &breadcrumbs[posKey & (breadcrumbs.size() - 1)] : nullptr;
otherThread = false;
owning = false;
if (location)
{
// See if another already marked this location, if not, mark it ourselves
Thread* tmp = (*location).thread.load(std::memory_order_relaxed);
if (tmp == nullptr)
{
(*location).thread.store(thisThread, std::memory_order_relaxed);
(*location).key.store(posKey, std::memory_order_relaxed);
owning = true;
}
else if ( tmp != thisThread
&& (*location).key.load(std::memory_order_relaxed) == posKey)
otherThread = true;
}
}
~ThreadHolding() {
if (owning) // Free the marked location
(*location).thread.store(nullptr, std::memory_order_relaxed);
}
bool marked() { return otherThread; }
private:
Breadcrumb* location;
bool otherThread, owning;
};
template <NodeType NT>
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode);
template <NodeType NT>
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth = 0);
Value value_to_tt(Value v, int ply);
Value value_from_tt(Value v, int ply, int r50c);
void update_pv(Move* pv, Move move, Move* childPv);
void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus);
void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus, int depth);
void update_all_stats(const Position& pos, Stack* ss, Move bestMove, Value bestValue, Value beta, Square prevSq,
Move* quietsSearched, int quietCount, Move* capturesSearched, int captureCount, Depth depth);
// perft() is our utility to verify move generation. All the leaf nodes up
// to the given depth are generated and counted, and the sum is returned.
template<bool Root>
uint64_t perft(Position& pos, Depth depth) {
StateInfo st;
uint64_t cnt, nodes = 0;
const bool leaf = (depth == 2);
for (const auto& m : MoveList<LEGAL>(pos))
{
if (Root && depth <= 1)
cnt = 1, nodes++;
else
{
pos.do_move(m, st);
cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - 1);
nodes += cnt;
pos.undo_move(m);
}
if (Root)
sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl;
}
return nodes;
}
} // namespace
/// Search::init() is called at startup to initialize various lookup tables
void Search::init() {
for (int i = 1; i < MAX_MOVES; ++i)
Reductions[i] = int((22.0 + std::log(Threads.size())) * std::log(i));
}
/// Search::clear() resets search state to its initial value
void Search::clear() {
Threads.main()->wait_for_search_finished();
Time.availableNodes = 0;
TT.clear();
Threads.clear();
Tablebases::init(Options["SyzygyPath"]); // Free mapped files
}
/// MainThread::search() is started when the program receives the UCI 'go'
/// command. It searches from the root position and outputs the "bestmove".
void MainThread::search() {
if (Limits.perft)
{
nodes = perft<true>(rootPos, Limits.perft);
sync_cout << "\nNodes searched: " << nodes << "\n" << sync_endl;
return;
}
Color us = rootPos.side_to_move();
Time.init(Limits, us, rootPos.game_ply());
TT.new_search();
Eval::verify_NNUE();
if (rootMoves.empty())
{
rootMoves.emplace_back(MOVE_NONE);
sync_cout << "info depth 0 score "
<< UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
<< sync_endl;
}
else
{
Threads.start_searching(); // start non-main threads
Thread::search(); // main thread start searching
}
// When we reach the maximum depth, we can arrive here without a raise of
// Threads.stop. However, if we are pondering or in an infinite search,
// the UCI protocol states that we shouldn't print the best move before the
// GUI sends a "stop" or "ponderhit" command. We therefore simply wait here
// until the GUI sends one of those commands.
while (!Threads.stop && (ponder || Limits.infinite))
{} // Busy wait for a stop or a ponder reset
// Stop the threads if not already stopped (also raise the stop if
// "ponderhit" just reset Threads.ponder).
Threads.stop = true;
// Wait until all threads have finished
Threads.wait_for_search_finished();
// When playing in 'nodes as time' mode, subtract the searched nodes from
// the available ones before exiting.
if (Limits.npmsec)
Time.availableNodes += Limits.inc[us] - Threads.nodes_searched();
Thread* bestThread = this;
if ( int(Options["MultiPV"]) == 1
&& !Limits.depth
&& !(Skill(Options["Skill Level"]).enabled() || int(Options["UCI_LimitStrength"]))
&& rootMoves[0].pv[0] != MOVE_NONE)
bestThread = Threads.get_best_thread();
bestPreviousScore = bestThread->rootMoves[0].score;
// Send again PV info if we have a new best thread
if (bestThread != this)
sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl;
sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960());
if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos))
std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960());
std::cout << sync_endl;
}
/// Thread::search() is the main iterative deepening loop. It calls search()
/// repeatedly with increasing depth until the allocated thinking time has been
/// consumed, the user stops the search, or the maximum search depth is reached.
void Thread::search() {
// To allow access to (ss-7) up to (ss+2), the stack must be oversized.
// The former is needed to allow update_continuation_histories(ss-1, ...),
// which accesses its argument at ss-6, also near the root.
// The latter is needed for statScores and killer initialization.
Stack stack[MAX_PLY+10], *ss = stack+7;
Move pv[MAX_PLY+1];
Value bestValue, alpha, beta, delta;
Move lastBestMove = MOVE_NONE;
Depth lastBestMoveDepth = 0;
MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr);
double timeReduction = 1, totBestMoveChanges = 0;
Color us = rootPos.side_to_move();
int iterIdx = 0;
std::memset(ss-7, 0, 10 * sizeof(Stack));
for (int i = 7; i > 0; i--)
(ss-i)->continuationHistory = &this->continuationHistory[0][0][NO_PIECE][0]; // Use as a sentinel
ss->pv = pv;
bestValue = delta = alpha = -VALUE_INFINITE;
beta = VALUE_INFINITE;
if (mainThread)
{
if (mainThread->bestPreviousScore == VALUE_INFINITE)
for (int i = 0; i < 4; ++i)
mainThread->iterValue[i] = VALUE_ZERO;
else
for (int i = 0; i < 4; ++i)
mainThread->iterValue[i] = mainThread->bestPreviousScore;
}
std::copy(&lowPlyHistory[2][0], &lowPlyHistory.back().back() + 1, &lowPlyHistory[0][0]);
std::fill(&lowPlyHistory[MAX_LPH - 2][0], &lowPlyHistory.back().back() + 1, 0);
size_t multiPV = size_t(Options["MultiPV"]);
// Pick integer skill levels, but non-deterministically round up or down
// such that the average integer skill corresponds to the input floating point one.
// UCI_Elo is converted to a suitable fractional skill level, using anchoring
// to CCRL Elo (goldfish 1.13 = 2000) and a fit through Ordo derived Elo
// for match (TC 60+0.6) results spanning a wide range of k values.
PRNG rng(now());
double floatLevel = Options["UCI_LimitStrength"] ?
std::clamp(std::pow((Options["UCI_Elo"] - 1346.6) / 143.4, 1 / 0.806), 0.0, 20.0) :
double(Options["Skill Level"]);
int intLevel = int(floatLevel) +
((floatLevel - int(floatLevel)) * 1024 > rng.rand<unsigned>() % 1024 ? 1 : 0);
Skill skill(intLevel);
// When playing with strength handicap enable MultiPV search that we will
// use behind the scenes to retrieve a set of possible moves.
if (skill.enabled())
multiPV = std::max(multiPV, (size_t)4);
multiPV = std::min(multiPV, rootMoves.size());
ttHitAverage = TtHitAverageWindow * TtHitAverageResolution / 2;
int ct = int(Options["Contempt"]) * PawnValueEg / 100; // From centipawns
// In analysis mode, adjust contempt in accordance with user preference
if (Limits.infinite || Options["UCI_AnalyseMode"])
ct = Options["Analysis Contempt"] == "Off" ? 0
: Options["Analysis Contempt"] == "Both" ? ct
: Options["Analysis Contempt"] == "White" && us == BLACK ? -ct
: Options["Analysis Contempt"] == "Black" && us == WHITE ? -ct
: ct;
// Evaluation score is from the white point of view
contempt = (us == WHITE ? make_score(ct, ct / 2)
: -make_score(ct, ct / 2));
int searchAgainCounter = 0;
// Iterative deepening loop until requested to stop or the target depth is reached
while ( ++rootDepth < MAX_PLY
&& !Threads.stop
&& !(Limits.depth && mainThread && rootDepth > Limits.depth))
{
// Age out PV variability metric
if (mainThread)
totBestMoveChanges /= 2;
// Save the last iteration's scores before first PV line is searched and
// all the move scores except the (new) PV are set to -VALUE_INFINITE.
for (RootMove& rm : rootMoves)
rm.previousScore = rm.score;
size_t pvFirst = 0;
pvLast = 0;
if (!Threads.increaseDepth)
searchAgainCounter++;
// MultiPV loop. We perform a full root search for each PV line
for (pvIdx = 0; pvIdx < multiPV && !Threads.stop; ++pvIdx)
{
if (pvIdx == pvLast)
{
pvFirst = pvLast;
for (pvLast++; pvLast < rootMoves.size(); pvLast++)
if (rootMoves[pvLast].tbRank != rootMoves[pvFirst].tbRank)
break;
}
// Reset UCI info selDepth for each depth and each PV line
selDepth = 0;
// Reset aspiration window starting size
if (rootDepth >= 4)
{
Value prev = rootMoves[pvIdx].previousScore;
delta = Value(17);
alpha = std::max(prev - delta,-VALUE_INFINITE);
beta = std::min(prev + delta, VALUE_INFINITE);
// Adjust contempt based on root move's previousScore (dynamic contempt)
int dct = ct + (105 - ct / 2) * prev / (abs(prev) + 149);
contempt = (us == WHITE ? make_score(dct, dct / 2)
: -make_score(dct, dct / 2));
}
// Start with a small aspiration window and, in the case of a fail
// high/low, re-search with a bigger window until we don't fail
// high/low anymore.
int failedHighCnt = 0;
while (true)
{
Depth adjustedDepth = std::max(1, rootDepth - failedHighCnt - searchAgainCounter);
bestValue = ::search<PV>(rootPos, ss, alpha, beta, adjustedDepth, false);
// Bring the best move to the front. It is critical that sorting
// is done with a stable algorithm because all the values but the
// first and eventually the new best one are set to -VALUE_INFINITE
// and we want to keep the same order for all the moves except the
// new PV that goes to the front. Note that in case of MultiPV
// search the already searched PV lines are preserved.
std::stable_sort(rootMoves.begin() + pvIdx, rootMoves.begin() + pvLast);
// If search has been stopped, we break immediately. Sorting is
// safe because RootMoves is still valid, although it refers to
// the previous iteration.
if (Threads.stop)
break;
// When failing high/low give some update (without cluttering
// the UI) before a re-search.
if ( mainThread
&& multiPV == 1
&& (bestValue <= alpha || bestValue >= beta)
&& Time.elapsed() > 3000)
sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
// In case of failing low/high increase aspiration window and
// re-search, otherwise exit the loop.
if (bestValue <= alpha)
{
beta = (alpha + beta) / 2;
alpha = std::max(bestValue - delta, -VALUE_INFINITE);
failedHighCnt = 0;
if (mainThread)
mainThread->stopOnPonderhit = false;
}
else if (bestValue >= beta)
{
beta = std::min(bestValue + delta, VALUE_INFINITE);
++failedHighCnt;
}
else
{
++rootMoves[pvIdx].bestMoveCount;
break;
}
delta += delta / 4 + 5;
assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
}
// Sort the PV lines searched so far and update the GUI
std::stable_sort(rootMoves.begin() + pvFirst, rootMoves.begin() + pvIdx + 1);
if ( mainThread
&& (Threads.stop || pvIdx + 1 == multiPV || Time.elapsed() > 3000))
sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
}
if (!Threads.stop)
completedDepth = rootDepth;
if (rootMoves[0].pv[0] != lastBestMove) {
lastBestMove = rootMoves[0].pv[0];
lastBestMoveDepth = rootDepth;
}
// Have we found a "mate in x"?
if ( Limits.mate
&& bestValue >= VALUE_MATE_IN_MAX_PLY
&& VALUE_MATE - bestValue <= 2 * Limits.mate)
Threads.stop = true;
if (!mainThread)
continue;
// If skill level is enabled and time is up, pick a sub-optimal best move
if (skill.enabled() && skill.time_to_pick(rootDepth))
skill.pick_best(multiPV);
// Do we have time for the next iteration? Can we stop searching now?
if ( Limits.use_time_management()
&& !Threads.stop
&& !mainThread->stopOnPonderhit)
{
double fallingEval = (318 + 6 * (mainThread->bestPreviousScore - bestValue)
+ 6 * (mainThread->iterValue[iterIdx] - bestValue)) / 825.0;
fallingEval = std::clamp(fallingEval, 0.5, 1.5);
// If the bestMove is stable over several iterations, reduce time accordingly
timeReduction = lastBestMoveDepth + 9 < completedDepth ? 1.92 : 0.95;
double reduction = (1.47 + mainThread->previousTimeReduction) / (2.32 * timeReduction);
// Use part of the gained time from a previous stable move for the current move
for (Thread* th : Threads)
{
totBestMoveChanges += th->bestMoveChanges;
th->bestMoveChanges = 0;
}
double bestMoveInstability = 1 + totBestMoveChanges / Threads.size();
double totalTime = rootMoves.size() == 1 ? 0 :
Time.optimum() * fallingEval * reduction * bestMoveInstability;
// Stop the search if we have exceeded the totalTime, at least 1ms search
if (Time.elapsed() > totalTime)
{
// If we are allowed to ponder do not stop the search now but
// keep pondering until the GUI sends "ponderhit" or "stop".
if (mainThread->ponder)
mainThread->stopOnPonderhit = true;
else
Threads.stop = true;
}
else if ( Threads.increaseDepth
&& !mainThread->ponder
&& Time.elapsed() > totalTime * 0.58)
Threads.increaseDepth = false;
else
Threads.increaseDepth = true;
}
mainThread->iterValue[iterIdx] = bestValue;
iterIdx = (iterIdx + 1) & 3;
}
if (!mainThread)
return;
mainThread->previousTimeReduction = timeReduction;
// If skill level is enabled, swap best PV line with the sub-optimal one
if (skill.enabled())
std::swap(rootMoves[0], *std::find(rootMoves.begin(), rootMoves.end(),
skill.best ? skill.best : skill.pick_best(multiPV)));
}
namespace {
// search<>() is the main search function for both PV and non-PV nodes
template <NodeType NT>
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {
constexpr bool PvNode = NT == PV;
const bool rootNode = PvNode && ss->ply == 0;
// Check if we have an upcoming move which draws by repetition, or
// if the opponent had an alternative move earlier to this position.
if ( pos.rule50_count() >= 3
&& alpha < VALUE_DRAW
&& !rootNode
&& pos.has_game_cycle(ss->ply))
{
alpha = value_draw(pos.this_thread());
if (alpha >= beta)
return alpha;
}
// Dive into quiescence search when the depth reaches zero
if (depth <= 0)
return qsearch<NT>(pos, ss, alpha, beta);
assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
assert(PvNode || (alpha == beta - 1));
assert(0 < depth && depth < MAX_PLY);
assert(!(PvNode && cutNode));
Move pv[MAX_PLY+1], capturesSearched[32], quietsSearched[64];
StateInfo st;
TTEntry* tte;
Key posKey;
Move ttMove, move, excludedMove, bestMove;
Depth extension, newDepth;
Value bestValue, value, ttValue, eval, maxValue, probCutBeta;
bool ttHit, formerPv, givesCheck, improving, didLMR, priorCapture;
bool captureOrPromotion, doFullDepthSearch, moveCountPruning,
ttCapture, singularQuietLMR;
Piece movedPiece;
int moveCount, captureCount, quietCount;
// Step 1. Initialize node
Thread* thisThread = pos.this_thread();
ss->inCheck = pos.checkers();
priorCapture = pos.captured_piece();
Color us = pos.side_to_move();
moveCount = captureCount = quietCount = ss->moveCount = 0;
bestValue = -VALUE_INFINITE;
maxValue = VALUE_INFINITE;
// Check for the available remaining time
if (thisThread == Threads.main())
static_cast<MainThread*>(thisThread)->check_time();
// Used to send selDepth info to GUI (selDepth counts from 1, ply from 0)
if (PvNode && thisThread->selDepth < ss->ply + 1)
thisThread->selDepth = ss->ply + 1;
if (!rootNode)
{
// Step 2. Check for aborted search and immediate draw
if ( Threads.stop.load(std::memory_order_relaxed)
|| pos.is_draw(ss->ply)
|| ss->ply >= MAX_PLY)
return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos)
: value_draw(pos.this_thread());
// Step 3. Mate distance pruning. Even if we mate at the next move our score
// would be at best mate_in(ss->ply+1), but if alpha is already bigger because
// a shorter mate was found upward in the tree then there is no need to search
// because we will never beat the current alpha. Same logic but with reversed
// signs applies also in the opposite condition of being mated instead of giving
// mate. In this case return a fail-high score.
alpha = std::max(mated_in(ss->ply), alpha);
beta = std::min(mate_in(ss->ply+1), beta);
if (alpha >= beta)
return alpha;
}
assert(0 <= ss->ply && ss->ply < MAX_PLY);
(ss+1)->ply = ss->ply + 1;
(ss+1)->ttPv = false;
(ss+1)->excludedMove = bestMove = MOVE_NONE;
(ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
Square prevSq = to_sq((ss-1)->currentMove);
// Initialize statScore to zero for the grandchildren of the current position.
// So statScore is shared between all grandchildren and only the first grandchild
// starts with statScore = 0. Later grandchildren start with the last calculated
// statScore of the previous grandchild. This influences the reduction rules in
// LMR which are based on the statScore of parent position.
if (rootNode)
(ss+4)->statScore = 0;
else
(ss+2)->statScore = 0;
// Step 4. Transposition table lookup. We don't want the score of a partial
// search to overwrite a previous full search TT value, so we use a different
// position key in case of an excluded move.
excludedMove = ss->excludedMove;
posKey = excludedMove == MOVE_NONE ? pos.key() : pos.key() ^ make_key(excludedMove);
tte = TT.probe(posKey, ttHit);
ttValue = ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
ttMove = rootNode ? thisThread->rootMoves[thisThread->pvIdx].pv[0]
: ttHit ? tte->move() : MOVE_NONE;
if (!excludedMove)
ss->ttPv = PvNode || (ttHit && tte->is_pv());
formerPv = ss->ttPv && !PvNode;
if ( ss->ttPv
&& depth > 12
&& ss->ply - 1 < MAX_LPH
&& !priorCapture
&& is_ok((ss-1)->currentMove))
thisThread->lowPlyHistory[ss->ply - 1][from_to((ss-1)->currentMove)] << stat_bonus(depth - 5);
// thisThread->ttHitAverage can be used to approximate the running average of ttHit
thisThread->ttHitAverage = (TtHitAverageWindow - 1) * thisThread->ttHitAverage / TtHitAverageWindow
+ TtHitAverageResolution * ttHit;
// At non-PV nodes we check for an early TT cutoff
if ( !PvNode
&& ttHit
&& tte->depth() >= depth
&& ttValue != VALUE_NONE // Possible in case of TT access race
&& (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
: (tte->bound() & BOUND_UPPER)))
{
// If ttMove is quiet, update move sorting heuristics on TT hit
if (ttMove)
{
if (ttValue >= beta)
{
if (!pos.capture_or_promotion(ttMove))
update_quiet_stats(pos, ss, ttMove, stat_bonus(depth), depth);
// Extra penalty for early quiet moves of the previous ply
if ((ss-1)->moveCount <= 2 && !priorCapture)
update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + 1));
}
// Penalty for a quiet ttMove that fails low
else if (!pos.capture_or_promotion(ttMove))
{
int penalty = -stat_bonus(depth);
thisThread->mainHistory[us][from_to(ttMove)] << penalty;
update_continuation_histories(ss, pos.moved_piece(ttMove), to_sq(ttMove), penalty);
}
}
if (pos.rule50_count() < 90)
return ttValue;
}
// Step 5. Tablebases probe
if (!rootNode && TB::Cardinality)
{
int piecesCount = pos.count<ALL_PIECES>();
if ( piecesCount <= TB::Cardinality
&& (piecesCount < TB::Cardinality || depth >= TB::ProbeDepth)
&& pos.rule50_count() == 0
&& !pos.can_castle(ANY_CASTLING))
{
TB::ProbeState err;
TB::WDLScore wdl = Tablebases::probe_wdl(pos, &err);
// Force check of time on the next occasion
if (thisThread == Threads.main())
static_cast<MainThread*>(thisThread)->callsCnt = 0;
if (err != TB::ProbeState::FAIL)
{
thisThread->tbHits.fetch_add(1, std::memory_order_relaxed);
int drawScore = TB::UseRule50 ? 1 : 0;
// use the range VALUE_MATE_IN_MAX_PLY to VALUE_TB_WIN_IN_MAX_PLY to score
value = wdl < -drawScore ? VALUE_MATED_IN_MAX_PLY + ss->ply + 1
: wdl > drawScore ? VALUE_MATE_IN_MAX_PLY - ss->ply - 1
: VALUE_DRAW + 2 * wdl * drawScore;
Bound b = wdl < -drawScore ? BOUND_UPPER
: wdl > drawScore ? BOUND_LOWER : BOUND_EXACT;
if ( b == BOUND_EXACT
|| (b == BOUND_LOWER ? value >= beta : value <= alpha))
{
tte->save(posKey, value_to_tt(value, ss->ply), ss->ttPv, b,
std::min(MAX_PLY - 1, depth + 6),
MOVE_NONE, VALUE_NONE);
return value;
}
if (PvNode)
{
if (b == BOUND_LOWER)
bestValue = value, alpha = std::max(alpha, bestValue);
else
maxValue = value;
}
}
}
}
CapturePieceToHistory& captureHistory = thisThread->captureHistory;
// Step 6. Static evaluation of the position
if (ss->inCheck)
{
// Skip early pruning when in check
ss->staticEval = eval = VALUE_NONE;
improving = false;
goto moves_loop;
}
else if (ttHit)
{
// Never assume anything about values stored in TT
ss->staticEval = eval = tte->eval();
if (eval == VALUE_NONE)
ss->staticEval = eval = evaluate(pos);
if (eval == VALUE_DRAW)
eval = value_draw(thisThread);
// Can ttValue be used as a better position evaluation?
if ( ttValue != VALUE_NONE
&& (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER)))
eval = ttValue;
}
else
{
if ((ss-1)->currentMove != MOVE_NULL)
ss->staticEval = eval = evaluate(pos);
else
ss->staticEval = eval = -(ss-1)->staticEval + 2 * Tempo;
tte->save(posKey, VALUE_NONE, ss->ttPv, BOUND_NONE, DEPTH_NONE, MOVE_NONE, eval);
}
// Step 7. Razoring (~1 Elo)
if ( !rootNode // The required rootNode PV handling is not available in qsearch
&& depth == 1
&& eval <= alpha - RazorMargin)
return qsearch<NT>(pos, ss, alpha, beta);
improving = (ss-2)->staticEval == VALUE_NONE
? ss->staticEval > (ss-4)->staticEval || (ss-4)->staticEval == VALUE_NONE
: ss->staticEval > (ss-2)->staticEval;
// Step 8. Futility pruning: child node (~50 Elo)
if ( !PvNode
&& depth < 8
&& eval - futility_margin(depth, improving) >= beta
&& eval < VALUE_KNOWN_WIN) // Do not return unproven wins
return eval;
// Step 9. Null move search with verification search (~40 Elo)
if ( !PvNode
&& (ss-1)->currentMove != MOVE_NULL
&& (ss-1)->statScore < 22977
&& eval >= beta
&& eval >= ss->staticEval
&& ss->staticEval >= beta - 30 * depth - 28 * improving + 84 * ss->ttPv + 182
&& !excludedMove
&& pos.non_pawn_material(us)
&& (ss->ply >= thisThread->nmpMinPly || us != thisThread->nmpColor))
{
assert(eval - beta >= 0);
// Null move dynamic reduction based on depth and value
Depth R = (817 + 71 * depth) / 213 + std::min(int(eval - beta) / 192, 3);
ss->currentMove = MOVE_NULL;
ss->continuationHistory = &thisThread->continuationHistory[0][0][NO_PIECE][0];
pos.do_null_move(st);
Value nullValue = -search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode);
pos.undo_null_move();
if (nullValue >= beta)
{
// Do not return unproven mate or TB scores
if (nullValue >= VALUE_TB_WIN_IN_MAX_PLY)
nullValue = beta;
if (thisThread->nmpMinPly || (abs(beta) < VALUE_KNOWN_WIN && depth < 13))
return nullValue;
assert(!thisThread->nmpMinPly); // Recursive verification is not allowed
// Do verification search at high depths, with null move pruning disabled
// for us, until ply exceeds nmpMinPly.
thisThread->nmpMinPly = ss->ply + 3 * (depth-R) / 4;
thisThread->nmpColor = us;
Value v = search<NonPV>(pos, ss, beta-1, beta, depth-R, false);
thisThread->nmpMinPly = 0;
if (v >= beta)
return nullValue;
}
}
probCutBeta = beta + 176 - 49 * improving;
// Step 10. ProbCut (~10 Elo)
// If we have a good enough capture and a reduced search returns a value
// much above beta, we can (almost) safely prune the previous move.
if ( !PvNode
&& depth > 4
&& abs(beta) < VALUE_TB_WIN_IN_MAX_PLY
// if value from transposition table is lower than probCutBeta, don't attempt probCut
// there and in further interactions with transposition table cutoff depth is set to depth - 3
// because probCut search has depth set to depth - 4 but we also do a move before it
// so effective depth is equal to depth - 3
&& !( ttHit
&& tte->depth() >= depth - 3
&& ttValue != VALUE_NONE
&& ttValue < probCutBeta))
{
// if ttMove is a capture and value from transposition table is good enough produce probCut
// cutoff without digging into actual probCut search
if ( ttHit
&& tte->depth() >= depth - 3
&& ttValue != VALUE_NONE
&& ttValue >= probCutBeta
&& ttMove
&& pos.capture_or_promotion(ttMove))
return probCutBeta;
assert(probCutBeta < VALUE_INFINITE);
MovePicker mp(pos, ttMove, probCutBeta - ss->staticEval, &captureHistory);
int probCutCount = 0;
bool ttPv = ss->ttPv;
ss->ttPv = false;
while ( (move = mp.next_move()) != MOVE_NONE
&& probCutCount < 2 + 2 * cutNode)
if (move != excludedMove && pos.legal(move))
{
assert(pos.capture_or_promotion(move));
assert(depth >= 5);
captureOrPromotion = true;
probCutCount++;
ss->currentMove = move;
ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck]
[captureOrPromotion]
[pos.moved_piece(move)]
[to_sq(move)];
pos.do_move(move, st);
// Perform a preliminary qsearch to verify that the move holds
value = -qsearch<NonPV>(pos, ss+1, -probCutBeta, -probCutBeta+1);
// If the qsearch held, perform the regular search
if (value >= probCutBeta)
value = -search<NonPV>(pos, ss+1, -probCutBeta, -probCutBeta+1, depth - 4, !cutNode);
pos.undo_move(move);
if (value >= probCutBeta)
{
// if transposition table doesn't have equal or more deep info write probCut data into it
if ( !(ttHit
&& tte->depth() >= depth - 3
&& ttValue != VALUE_NONE))
tte->save(posKey, value_to_tt(value, ss->ply), ttPv,
BOUND_LOWER,
depth - 3, move, ss->staticEval);
return value;
}
}
ss->ttPv = ttPv;
}
// Step 11. If the position is not in TT, decrease depth by 2
if ( PvNode
&& depth >= 6
&& !ttMove)
depth -= 2;
moves_loop: // When in check, search starts from here
const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory,
nullptr , (ss-4)->continuationHistory,
nullptr , (ss-6)->continuationHistory };
Move countermove = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq];
MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory,
&thisThread->lowPlyHistory,
&captureHistory,
contHist,
countermove,
ss->killers,
ss->ply);
value = bestValue;
singularQuietLMR = moveCountPruning = false;
ttCapture = ttMove && pos.capture_or_promotion(ttMove);
// Mark this node as being searched
ThreadHolding th(thisThread, posKey, ss->ply);
// Step 12. Loop through all pseudo-legal moves until no moves remain
// or a beta cutoff occurs.
while ((move = mp.next_move(moveCountPruning)) != MOVE_NONE)
{
assert(is_ok(move));
if (move == excludedMove)
continue;
// At root obey the "searchmoves" option and skip moves not listed in Root
// Move List. As a consequence any illegal move is also skipped. In MultiPV
// mode we also skip PV moves which have been already searched and those
// of lower "TB rank" if we are in a TB root position.
if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->pvIdx,
thisThread->rootMoves.begin() + thisThread->pvLast, move))
continue;
// Check for legality
if (!rootNode && !pos.legal(move))
continue;
ss->moveCount = ++moveCount;
if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000)
sync_cout << "info depth " << depth
<< " currmove " << UCI::move(move, pos.is_chess960())
<< " currmovenumber " << moveCount + thisThread->pvIdx << sync_endl;
if (PvNode)
(ss+1)->pv = nullptr;
extension = 0;
captureOrPromotion = pos.capture_or_promotion(move);
movedPiece = pos.moved_piece(move);
givesCheck = pos.gives_check(move);
// Calculate new depth for this move
newDepth = depth - 1;
// Step 13. Pruning at shallow depth (~200 Elo)
if ( !rootNode
&& pos.non_pawn_material(us)
&& bestValue > VALUE_TB_LOSS_IN_MAX_PLY)
{
// Skip quiet moves if movecount exceeds our FutilityMoveCount threshold
moveCountPruning = moveCount >= futility_move_count(improving, depth);
// Reduced depth of the next LMR search
int lmrDepth = std::max(newDepth - reduction(improving, depth, moveCount), 0);
if ( !captureOrPromotion
&& !givesCheck)
{
// Countermoves based pruning (~20 Elo)
if ( lmrDepth < 4 + ((ss-1)->statScore > 0 || (ss-1)->moveCount == 1)
&& (*contHist[0])[movedPiece][to_sq(move)] < CounterMovePruneThreshold
&& (*contHist[1])[movedPiece][to_sq(move)] < CounterMovePruneThreshold)
continue;
// Futility pruning: parent node (~5 Elo)
if ( lmrDepth < 7
&& !ss->inCheck
&& ss->staticEval + 283 + 170 * lmrDepth <= alpha
&& (*contHist[0])[movedPiece][to_sq(move)]
+ (*contHist[1])[movedPiece][to_sq(move)]
+ (*contHist[3])[movedPiece][to_sq(move)]
+ (*contHist[5])[movedPiece][to_sq(move)] / 2 < 27376)
continue;
// Prune moves with negative SEE (~20 Elo)
if (!pos.see_ge(move, Value(-(29 - std::min(lmrDepth, 18)) * lmrDepth * lmrDepth)))
continue;
}
else
{
// Capture history based pruning when the move doesn't give check
if ( !givesCheck
&& lmrDepth < 1
&& captureHistory[movedPiece][to_sq(move)][type_of(pos.piece_on(to_sq(move)))] < 0)
continue;
// Futility pruning for captures
if ( !givesCheck
&& lmrDepth < 6
&& !(PvNode && abs(bestValue) < 2)
&& PieceValue[MG][type_of(movedPiece)] >= PieceValue[MG][type_of(pos.piece_on(to_sq(move)))]
&& !ss->inCheck
&& ss->staticEval + 169 + 244 * lmrDepth
+ PieceValue[MG][type_of(pos.piece_on(to_sq(move)))] <= alpha)
continue;
// See based pruning
if (!pos.see_ge(move, Value(-221) * depth)) // (~25 Elo)
continue;
}
}
// Step 14. Extensions (~75 Elo)
// Singular extension search (~70 Elo). If all moves but one fail low on a
// search of (alpha-s, beta-s), and just one fails high on (alpha, beta),
// then that move is singular and should be extended. To verify this we do
// a reduced search on all the other moves but the ttMove and if the
// result is lower than ttValue minus a margin, then we will extend the ttMove.
if ( depth >= 7
&& move == ttMove
&& !rootNode
&& !excludedMove // Avoid recursive singular search
/* && ttValue != VALUE_NONE Already implicit in the next condition */
&& abs(ttValue) < VALUE_KNOWN_WIN
&& (tte->bound() & BOUND_LOWER)
&& tte->depth() >= depth - 3)
{
Value singularBeta = ttValue - ((formerPv + 4) * depth) / 2;
Depth singularDepth = (depth - 1 + 3 * formerPv) / 2;
ss->excludedMove = move;
value = search<NonPV>(pos, ss, singularBeta - 1, singularBeta, singularDepth, cutNode);
ss->excludedMove = MOVE_NONE;
if (value < singularBeta)
{
extension = 1;
singularQuietLMR = !ttCapture;
}
// Multi-cut pruning
// Our ttMove is assumed to fail high, and now we failed high also on a reduced
// search without the ttMove. So we assume this expected Cut-node is not singular,
// that multiple moves fail high, and we can prune the whole subtree by returning
// a soft bound.
else if (singularBeta >= beta)
return singularBeta;
// If the eval of ttMove is greater than beta we try also if there is another
// move that pushes it over beta, if so also produce a cutoff.
else if (ttValue >= beta)
{
ss->excludedMove = move;
value = search<NonPV>(pos, ss, beta - 1, beta, (depth + 3) / 2, cutNode);
ss->excludedMove = MOVE_NONE;
if (value >= beta)
return beta;
}
}
// Check extension (~2 Elo)
else if ( givesCheck
&& (pos.is_discovery_check_on_king(~us, move) || pos.see_ge(move)))
extension = 1;
// Last captures extension
else if ( PieceValue[EG][pos.captured_piece()] > PawnValueEg
&& pos.non_pawn_material() <= 2 * RookValueMg)
extension = 1;
// Castling extension
if ( type_of(move) == CASTLING
&& popcount(pos.pieces(us) & ~pos.pieces(PAWN) & (to_sq(move) & KingSide ? KingSide : QueenSide)) <= 2)
extension = 1;
// Late irreversible move extension
if ( move == ttMove
&& pos.rule50_count() > 80
&& (captureOrPromotion || type_of(movedPiece) == PAWN))
extension = 2;
// Add extension to new depth
newDepth += extension;
// Speculative prefetch as early as possible
prefetch(TT.first_entry(pos.key_after(move)));
// Update the current move (this must be done after singular extension search)
ss->currentMove = move;
ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck]
[captureOrPromotion]
[movedPiece]
[to_sq(move)];
// Step 15. Make the move
pos.do_move(move, st, givesCheck);
// Step 16. Reduced depth search (LMR, ~200 Elo). If the move fails high it will be
// re-searched at full depth.
if ( depth >= 3
&& moveCount > 1 + 2 * rootNode + 2 * (PvNode && abs(bestValue) < 2)
&& ( !captureOrPromotion
|| moveCountPruning
|| ss->staticEval + PieceValue[EG][pos.captured_piece()] <= alpha
|| cutNode
|| thisThread->ttHitAverage < 427 * TtHitAverageResolution * TtHitAverageWindow / 1024))
{
Depth r = reduction(improving, depth, moveCount);
// Decrease reduction at non-check cut nodes for second move at low depths
if ( cutNode
&& depth <= 10
&& moveCount <= 2
&& !ss->inCheck)
r--;
// Decrease reduction if the ttHit running average is large
if (thisThread->ttHitAverage > 509 * TtHitAverageResolution * TtHitAverageWindow / 1024)
r--;
// Reduction if other threads are searching this position
if (th.marked())
r++;
// Decrease reduction if position is or has been on the PV (~10 Elo)
if (ss->ttPv)
r -= 2;
if (moveCountPruning && !formerPv)
r++;
// Decrease reduction if opponent's move count is high (~5 Elo)
if ((ss-1)->moveCount > 13)
r--;
// Decrease reduction if ttMove has been singularly extended (~3 Elo)
if (singularQuietLMR)
r -= 1 + formerPv;
if (!captureOrPromotion)
{
// Increase reduction if ttMove is a capture (~5 Elo)
if (ttCapture)
r++;
// Increase reduction for cut nodes (~10 Elo)
if (cutNode)
r += 2;
// Decrease reduction for moves that escape a capture. Filter out
// castling moves, because they are coded as "king captures rook" and
// hence break make_move(). (~2 Elo)
else if ( type_of(move) == NORMAL
&& !pos.see_ge(reverse_move(move)))
r -= 2 + ss->ttPv - (type_of(movedPiece) == PAWN);
ss->statScore = thisThread->mainHistory[us][from_to(move)]
+ (*contHist[0])[movedPiece][to_sq(move)]
+ (*contHist[1])[movedPiece][to_sq(move)]
+ (*contHist[3])[movedPiece][to_sq(move)]
- 5287;
// Decrease/increase reduction by comparing opponent's stat score (~10 Elo)
if (ss->statScore >= -106 && (ss-1)->statScore < -104)
r--;
else if ((ss-1)->statScore >= -119 && ss->statScore < -140)
r++;
// Decrease/increase reduction for moves with a good/bad history (~30 Elo)
r -= ss->statScore / 14884;
}
else
{
// Increase reduction for captures/promotions if late move and at low depth
if (depth < 8 && moveCount > 2)
r++;
// Unless giving check, this capture is likely bad
if ( !givesCheck
&& ss->staticEval + PieceValue[EG][pos.captured_piece()] + 213 * depth <= alpha)
r++;
}
Depth d = std::clamp(newDepth - r, 1, newDepth);
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true);
doFullDepthSearch = value > alpha && d != newDepth;
didLMR = true;
}
else
{
doFullDepthSearch = !PvNode || moveCount > 1;
didLMR = false;
}
// Step 17. Full depth search when LMR is skipped or fails high
if (doFullDepthSearch)
{
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode);
if (didLMR && !captureOrPromotion)
{
int bonus = value > alpha ? stat_bonus(newDepth)
: -stat_bonus(newDepth);
if (move == ss->killers[0])
bonus += bonus / 4;
update_continuation_histories(ss, movedPiece, to_sq(move), bonus);
}
}
// For PV nodes only, do a full PV search on the first move or after a fail
// high (in the latter case search only if value < beta), otherwise let the
// parent node fail low with value <= alpha and try another move.
if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta))))
{
(ss+1)->pv = pv;
(ss+1)->pv[0] = MOVE_NONE;
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, false);
}
// Step 18. Undo move
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Step 19. Check for a new best move
// Finished searching the move. If a stop occurred, the return value of
// the search cannot be trusted, and we return immediately without
// updating best move, PV and TT.
if (Threads.stop.load(std::memory_order_relaxed))
return VALUE_ZERO;
if (rootNode)
{
RootMove& rm = *std::find(thisThread->rootMoves.begin(),
thisThread->rootMoves.end(), move);
// PV move or new best move?
if (moveCount == 1 || value > alpha)
{
rm.score = value;
rm.selDepth = thisThread->selDepth;
rm.pv.resize(1);
assert((ss+1)->pv);
for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m)
rm.pv.push_back(*m);
// We record how often the best move has been changed in each
// iteration. This information is used for time management: when
// the best move changes frequently, we allocate some more time.
if (moveCount > 1)
++thisThread->bestMoveChanges;
}
else
// All other moves but the PV are set to the lowest value: this
// is not a problem when sorting because the sort is stable and the
// move position in the list is preserved - just the PV is pushed up.
rm.score = -VALUE_INFINITE;
}
if (value > bestValue)
{
bestValue = value;
if (value > alpha)
{
bestMove = move;
if (PvNode && !rootNode) // Update pv even in fail-high case
update_pv(ss->pv, move, (ss+1)->pv);
if (PvNode && value < beta) // Update alpha! Always alpha < beta
alpha = value;
else
{
assert(value >= beta); // Fail high
ss->statScore = 0;
break;
}
}
}
if (move != bestMove)
{
if (captureOrPromotion && captureCount < 32)
capturesSearched[captureCount++] = move;
else if (!captureOrPromotion && quietCount < 64)
quietsSearched[quietCount++] = move;
}
}
// The following condition would detect a stop only after move loop has been
// completed. But in this case bestValue is valid because we have fully
// searched our subtree, and we can anyhow save the result in TT.
/*
if (Threads.stop)
return VALUE_DRAW;
*/
// Step 20. Check for mate and stalemate
// All legal moves have been searched and if there are no legal moves, it
// must be a mate or a stalemate. If we are in a singular extension search then
// return a fail low score.
assert(moveCount || !ss->inCheck || excludedMove || !MoveList<LEGAL>(pos).size());
if (!moveCount)
bestValue = excludedMove ? alpha
: ss->inCheck ? mated_in(ss->ply) : VALUE_DRAW;
else if (bestMove)
update_all_stats(pos, ss, bestMove, bestValue, beta, prevSq,
quietsSearched, quietCount, capturesSearched, captureCount, depth);
// Bonus for prior countermove that caused the fail low
else if ( (depth >= 3 || PvNode)
&& !priorCapture)
update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, stat_bonus(depth));
if (PvNode)
bestValue = std::min(bestValue, maxValue);
// If no good move is found and the previous position was ttPv, then the previous
// opponent move is probably good and the new position is added to the search tree.
if (bestValue <= alpha)
ss->ttPv = ss->ttPv || ((ss-1)->ttPv && depth > 3);
// Otherwise, a counter move has been found and if the position is the last leaf
// in the search tree, remove the position from the search tree.
else if (depth > 3)
ss->ttPv = ss->ttPv && (ss+1)->ttPv;
if (!excludedMove && !(rootNode && thisThread->pvIdx))
tte->save(posKey, value_to_tt(bestValue, ss->ply), ss->ttPv,
bestValue >= beta ? BOUND_LOWER :
PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
depth, bestMove, ss->staticEval);
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
return bestValue;
}
// qsearch() is the quiescence search function, which is called by the main search
// function with zero depth, or recursively with further decreasing depth per call.
template <NodeType NT>
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
constexpr bool PvNode = NT == PV;
assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
assert(PvNode || (alpha == beta - 1));
assert(depth <= 0);
Move pv[MAX_PLY+1];
StateInfo st;
TTEntry* tte;
Key posKey;
Move ttMove, move, bestMove;
Depth ttDepth;
Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
bool ttHit, pvHit, givesCheck, captureOrPromotion;
int moveCount;
if (PvNode)
{
oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves
(ss+1)->pv = pv;
ss->pv[0] = MOVE_NONE;
}
Thread* thisThread = pos.this_thread();
(ss+1)->ply = ss->ply + 1;
bestMove = MOVE_NONE;
ss->inCheck = pos.checkers();
moveCount = 0;
// Check for an immediate draw or maximum ply reached
if ( pos.is_draw(ss->ply)
|| ss->ply >= MAX_PLY)
return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos) : VALUE_DRAW;
assert(0 <= ss->ply && ss->ply < MAX_PLY);
// Decide whether or not to include checks: this fixes also the type of
// TT entry depth that we are going to use. Note that in qsearch we use
// only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
ttDepth = ss->inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
: DEPTH_QS_NO_CHECKS;
// Transposition table lookup
posKey = pos.key();
tte = TT.probe(posKey, ttHit);
ttValue = ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
ttMove = ttHit ? tte->move() : MOVE_NONE;
pvHit = ttHit && tte->is_pv();
if ( !PvNode
&& ttHit
&& tte->depth() >= ttDepth
&& ttValue != VALUE_NONE // Only in case of TT access race
&& (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
: (tte->bound() & BOUND_UPPER)))
return ttValue;
// Evaluate the position statically
if (ss->inCheck)
{
ss->staticEval = VALUE_NONE;
bestValue = futilityBase = -VALUE_INFINITE;
}
else
{
if (ttHit)
{
// Never assume anything about values stored in TT
if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE)
ss->staticEval = bestValue = evaluate(pos);
// Can ttValue be used as a better position evaluation?
if ( ttValue != VALUE_NONE
&& (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER)))
bestValue = ttValue;
}
else
ss->staticEval = bestValue =
(ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
: -(ss-1)->staticEval + 2 * Tempo;
// Stand pat. Return immediately if static value is at least beta
if (bestValue >= beta)
{
if (!ttHit)
tte->save(posKey, value_to_tt(bestValue, ss->ply), false, BOUND_LOWER,
DEPTH_NONE, MOVE_NONE, ss->staticEval);
return bestValue;
}
if (PvNode && bestValue > alpha)
alpha = bestValue;
futilityBase = bestValue + 145;
}
const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory,
nullptr , (ss-4)->continuationHistory,
nullptr , (ss-6)->continuationHistory };
// Initialize a MovePicker object for the current position, and prepare
// to search the moves. Because the depth is <= 0 here, only captures,
// queen and checking knight promotions, and other checks(only if depth >= DEPTH_QS_CHECKS)
// will be generated.
MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory,
&thisThread->captureHistory,
contHist,
to_sq((ss-1)->currentMove));
// Loop through the moves until no moves remain or a beta cutoff occurs
while ((move = mp.next_move()) != MOVE_NONE)
{
assert(is_ok(move));
givesCheck = pos.gives_check(move);
captureOrPromotion = pos.capture_or_promotion(move);
moveCount++;
// Futility pruning
if ( !ss->inCheck
&& !givesCheck
&& futilityBase > -VALUE_KNOWN_WIN
&& !pos.advanced_pawn_push(move))
{
assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push
// moveCount pruning
if (moveCount > 2)
continue;
futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))];
if (futilityValue <= alpha)
{
bestValue = std::max(bestValue, futilityValue);
continue;
}
if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1))
{
bestValue = std::max(bestValue, futilityBase);
continue;
}
}
// Do not search moves with negative SEE values
if (!ss->inCheck && !pos.see_ge(move))
continue;
// Speculative prefetch as early as possible
prefetch(TT.first_entry(pos.key_after(move)));
// Check for legality just before making the move
if (!pos.legal(move))
{
moveCount--;
continue;
}
ss->currentMove = move;
ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck]
[captureOrPromotion]
[pos.moved_piece(move)]
[to_sq(move)];
if ( !captureOrPromotion
&& moveCount
&& (*contHist[0])[pos.moved_piece(move)][to_sq(move)] < CounterMovePruneThreshold
&& (*contHist[1])[pos.moved_piece(move)][to_sq(move)] < CounterMovePruneThreshold)
continue;
// Make and search the move
pos.do_move(move, st, givesCheck);
value = -qsearch<NT>(pos, ss+1, -beta, -alpha, depth - 1);
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Check for a new best move
if (value > bestValue)
{
bestValue = value;
if (value > alpha)
{
bestMove = move;
if (PvNode) // Update pv even in fail-high case
update_pv(ss->pv, move, (ss+1)->pv);
if (PvNode && value < beta) // Update alpha here!
alpha = value;
else
break; // Fail high
}
}
}
// All legal moves have been searched. A special case: if we're in check
// and no legal moves were found, it is checkmate.
if (ss->inCheck && bestValue == -VALUE_INFINITE)
return mated_in(ss->ply); // Plies to mate from the root
tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit,
bestValue >= beta ? BOUND_LOWER :
PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER,
ttDepth, bestMove, ss->staticEval);
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
return bestValue;
}
// value_to_tt() adjusts a mate or TB score from "plies to mate from the root" to
// "plies to mate from the current position". Standard scores are unchanged.
// The function is called before storing a value in the transposition table.
Value value_to_tt(Value v, int ply) {
assert(v != VALUE_NONE);
return v >= VALUE_TB_WIN_IN_MAX_PLY ? v + ply
: v <= VALUE_TB_LOSS_IN_MAX_PLY ? v - ply : v;
}
// value_from_tt() is the inverse of value_to_tt(): it adjusts a mate or TB score
// from the transposition table (which refers to the plies to mate/be mated from
// current position) to "plies to mate/be mated (TB win/loss) from the root". However,
// for mate scores, to avoid potentially false mate scores related to the 50 moves rule
// and the graph history interaction, we return an optimal TB score instead.
Value value_from_tt(Value v, int ply, int r50c) {
if (v == VALUE_NONE)
return VALUE_NONE;
if (v >= VALUE_TB_WIN_IN_MAX_PLY) // TB win or better
{
if (v >= VALUE_MATE_IN_MAX_PLY && VALUE_MATE - v > 99 - r50c)
return VALUE_MATE_IN_MAX_PLY - 1; // do not return a potentially false mate score
return v - ply;
}
if (v <= VALUE_TB_LOSS_IN_MAX_PLY) // TB loss or worse
{
if (v <= VALUE_MATED_IN_MAX_PLY && VALUE_MATE + v > 99 - r50c)
return VALUE_MATED_IN_MAX_PLY + 1; // do not return a potentially false mate score
return v + ply;
}
return v;
}
// update_pv() adds current move and appends child pv[]
void update_pv(Move* pv, Move move, Move* childPv) {
for (*pv++ = move; childPv && *childPv != MOVE_NONE; )
*pv++ = *childPv++;
*pv = MOVE_NONE;
}
// update_all_stats() updates stats at the end of search() when a bestMove is found
void update_all_stats(const Position& pos, Stack* ss, Move bestMove, Value bestValue, Value beta, Square prevSq,
Move* quietsSearched, int quietCount, Move* capturesSearched, int captureCount, Depth depth) {
int bonus1, bonus2;
Color us = pos.side_to_move();
Thread* thisThread = pos.this_thread();
CapturePieceToHistory& captureHistory = thisThread->captureHistory;
Piece moved_piece = pos.moved_piece(bestMove);
PieceType captured = type_of(pos.piece_on(to_sq(bestMove)));
bonus1 = stat_bonus(depth + 1);
bonus2 = bestValue > beta + PawnValueMg ? bonus1 // larger bonus
: stat_bonus(depth); // smaller bonus
if (!pos.capture_or_promotion(bestMove))
{
update_quiet_stats(pos, ss, bestMove, bonus2, depth);
// Decrease all the non-best quiet moves
for (int i = 0; i < quietCount; ++i)
{
thisThread->mainHistory[us][from_to(quietsSearched[i])] << -bonus2;
update_continuation_histories(ss, pos.moved_piece(quietsSearched[i]), to_sq(quietsSearched[i]), -bonus2);
}
}
else
captureHistory[moved_piece][to_sq(bestMove)][captured] << bonus1;
// Extra penalty for a quiet TT or main killer move in previous ply when it gets refuted
if ( ((ss-1)->moveCount == 1 || ((ss-1)->currentMove == (ss-1)->killers[0]))
&& !pos.captured_piece())
update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -bonus1);
// Decrease all the non-best capture moves
for (int i = 0; i < captureCount; ++i)
{
moved_piece = pos.moved_piece(capturesSearched[i]);
captured = type_of(pos.piece_on(to_sq(capturesSearched[i])));
captureHistory[moved_piece][to_sq(capturesSearched[i])][captured] << -bonus1;
}
}
// update_continuation_histories() updates histories of the move pairs formed
// by moves at ply -1, -2, -4, and -6 with current move.
void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus) {
for (int i : {1, 2, 4, 6})
{
if (ss->inCheck && i > 2)
break;
if (is_ok((ss-i)->currentMove))
(*(ss-i)->continuationHistory)[pc][to] << bonus;
}
}
// update_quiet_stats() updates move sorting heuristics
void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus, int depth) {
if (ss->killers[0] != move)
{
ss->killers[1] = ss->killers[0];
ss->killers[0] = move;
}
Color us = pos.side_to_move();
Thread* thisThread = pos.this_thread();
thisThread->mainHistory[us][from_to(move)] << bonus;
update_continuation_histories(ss, pos.moved_piece(move), to_sq(move), bonus);
if (type_of(pos.moved_piece(move)) != PAWN)
thisThread->mainHistory[us][from_to(reverse_move(move))] << -bonus;
if (is_ok((ss-1)->currentMove))
{
Square prevSq = to_sq((ss-1)->currentMove);
thisThread->counterMoves[pos.piece_on(prevSq)][prevSq] = move;
}
if (depth > 11 && ss->ply < MAX_LPH)
thisThread->lowPlyHistory[ss->ply][from_to(move)] << stat_bonus(depth - 7);
}
// When playing with strength handicap, choose best move among a set of RootMoves
// using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
Move Skill::pick_best(size_t multiPV) {
const RootMoves& rootMoves = Threads.main()->rootMoves;
static PRNG rng(now()); // PRNG sequence should be non-deterministic
// RootMoves are already sorted by score in descending order
Value topScore = rootMoves[0].score;
int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg);
int weakness = 120 - 2 * level;
int maxScore = -VALUE_INFINITE;
// Choose best move. For each move score we add two terms, both dependent on
// weakness. One is deterministic and bigger for weaker levels, and one is
// random. Then we choose the move with the resulting highest score.
for (size_t i = 0; i < multiPV; ++i)
{
// This is our magic formula
int push = ( weakness * int(topScore - rootMoves[i].score)
+ delta * (rng.rand<unsigned>() % weakness)) / 128;
if (rootMoves[i].score + push >= maxScore)
{
maxScore = rootMoves[i].score + push;
best = rootMoves[i].pv[0];
}
}
return best;
}
} // namespace
/// MainThread::check_time() is used to print debug info and, more importantly,
/// to detect when we are out of available time and thus stop the search.
void MainThread::check_time() {
if (--callsCnt > 0)
return;
// When using nodes, ensure checking rate is not lower than 0.1% of nodes
callsCnt = Limits.nodes ? std::min(1024, int(Limits.nodes / 1024)) : 1024;
static TimePoint lastInfoTime = now();
TimePoint elapsed = Time.elapsed();
TimePoint tick = Limits.startTime + elapsed;
if (tick - lastInfoTime >= 1000)
{
lastInfoTime = tick;
dbg_print();
}
// We should not stop pondering until told so by the GUI
if (ponder)
return;
if ( (Limits.use_time_management() && (elapsed > Time.maximum() - 10 || stopOnPonderhit))
|| (Limits.movetime && elapsed >= Limits.movetime)
|| (Limits.nodes && Threads.nodes_searched() >= (uint64_t)Limits.nodes))
Threads.stop = true;
}
/// UCI::pv() formats PV information according to the UCI protocol. UCI requires
/// that all (if any) unsearched PV lines are sent using a previous search score.
string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
std::stringstream ss;
TimePoint elapsed = Time.elapsed() + 1;
const RootMoves& rootMoves = pos.this_thread()->rootMoves;
size_t pvIdx = pos.this_thread()->pvIdx;
size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size());
uint64_t nodesSearched = Threads.nodes_searched();
uint64_t tbHits = Threads.tb_hits() + (TB::RootInTB ? rootMoves.size() : 0);
for (size_t i = 0; i < multiPV; ++i)
{
bool updated = rootMoves[i].score != -VALUE_INFINITE;
if (depth == 1 && !updated && i > 0)
continue;
Depth d = updated ? depth : std::max(1, depth - 1);
Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore;
if (v == -VALUE_INFINITE)
v = VALUE_ZERO;
bool tb = TB::RootInTB && abs(v) < VALUE_MATE_IN_MAX_PLY;
v = tb ? rootMoves[i].tbScore : v;
if (ss.rdbuf()->in_avail()) // Not at first line
ss << "\n";
ss << "info"
<< " depth " << d
<< " seldepth " << rootMoves[i].selDepth
<< " multipv " << i + 1
<< " score " << UCI::value(v);
if (Options["UCI_ShowWDL"])
ss << UCI::wdl(v, pos.game_ply());
if (!tb && i == pvIdx)
ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : "");
ss << " nodes " << nodesSearched
<< " nps " << nodesSearched * 1000 / elapsed;
if (elapsed > 1000) // Earlier makes little sense
ss << " hashfull " << TT.hashfull();
ss << " tbhits " << tbHits
<< " time " << elapsed
<< " pv";
for (Move m : rootMoves[i].pv)
ss << " " << UCI::move(m, pos.is_chess960());
}
return ss.str();
}
/// RootMove::extract_ponder_from_tt() is called in case we have no ponder move
/// before exiting the search, for instance, in case we stop the search during a
/// fail high at root. We try hard to have a ponder move to return to the GUI,
/// otherwise in case of 'ponder on' we have nothing to think on.
bool RootMove::extract_ponder_from_tt(Position& pos) {
StateInfo st;
bool ttHit;
assert(pv.size() == 1);
if (pv[0] == MOVE_NONE)
return false;
pos.do_move(pv[0], st);
TTEntry* tte = TT.probe(pos.key(), ttHit);
if (ttHit)
{
Move m = tte->move(); // Local copy to be SMP safe
if (MoveList<LEGAL>(pos).contains(m))
pv.push_back(m);
}
pos.undo_move(pv[0]);
return pv.size() > 1;
}
void Tablebases::rank_root_moves(Position& pos, Search::RootMoves& rootMoves) {
RootInTB = false;
UseRule50 = bool(Options["Syzygy50MoveRule"]);
ProbeDepth = int(Options["SyzygyProbeDepth"]);
Cardinality = int(Options["SyzygyProbeLimit"]);
bool dtz_available = true;
// Tables with fewer pieces than SyzygyProbeLimit are searched with
// ProbeDepth == DEPTH_ZERO
if (Cardinality > MaxCardinality)
{
Cardinality = MaxCardinality;
ProbeDepth = 0;
}
if (Cardinality >= popcount(pos.pieces()) && !pos.can_castle(ANY_CASTLING))
{
// Rank moves using DTZ tables
RootInTB = root_probe(pos, rootMoves);
if (!RootInTB)
{
// DTZ tables are missing; try to rank moves using WDL tables
dtz_available = false;
RootInTB = root_probe_wdl(pos, rootMoves);
}
}
if (RootInTB)
{
// Sort moves according to TB rank
std::stable_sort(rootMoves.begin(), rootMoves.end(),
[](const RootMove &a, const RootMove &b) { return a.tbRank > b.tbRank; } );
// Probe during search only if DTZ is not available and we are winning
if (dtz_available || rootMoves[0].tbScore <= VALUE_DRAW)
Cardinality = 0;
}
else
{
// Clean up if root_probe() and root_probe_wdl() have failed
for (auto& m : rootMoves)
m.tbRank = 0;
}
}
|