1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TUNE_H_INCLUDED
#define TUNE_H_INCLUDED
#include <memory>
#include <string>
#include <type_traits>
#include <vector>
typedef std::pair<int, int> Range; // Option's min-max values
typedef Range (RangeFun) (int);
// Default Range function, to calculate Option's min-max values
inline Range default_range(int v) {
return v > 0 ? Range(0, 2 * v) : Range(2 * v, 0);
}
struct SetRange {
explicit SetRange(RangeFun f) : fun(f) {}
SetRange(int min, int max) : fun(nullptr), range(min, max) {}
Range operator()(int v) const { return fun ? fun(v) : range; }
RangeFun* fun;
Range range;
};
#define SetDefaultRange SetRange(default_range)
/// BoolConditions struct is used to tune boolean conditions in the
/// code by toggling them on/off according to a probability that
/// depends on the value of a tuned integer parameter: for high
/// values of the parameter condition is always disabled, for low
/// values is always enabled, otherwise it is enabled with a given
/// probability that depnends on the parameter under tuning.
struct BoolConditions {
void init(size_t size) { values.resize(size, defaultValue), binary.resize(size, 0); }
void set();
std::vector<int> binary, values;
int defaultValue = 465, variance = 40, threshold = 500;
SetRange range = SetRange(0, 1000);
};
extern BoolConditions Conditions;
inline void set_conditions() { Conditions.set(); }
/// Tune class implements the 'magic' code that makes the setup of a fishtest
/// tuning session as easy as it can be. Mainly you have just to remove const
/// qualifiers from the variables you want to tune and flag them for tuning, so
/// if you have:
///
/// const Score myScore = S(10, 15);
/// const Value myValue[][2] = { { V(100), V(20) }, { V(7), V(78) } };
///
/// If you have a my_post_update() function to run after values have been updated,
/// and a my_range() function to set custom Option's min-max values, then you just
/// remove the 'const' qualifiers and write somewhere below in the file:
///
/// TUNE(SetRange(my_range), myScore, myValue, my_post_update);
///
/// You can also set the range directly, and restore the default at the end
///
/// TUNE(SetRange(-100, 100), myScore, SetDefaultRange);
///
/// In case update function is slow and you have many parameters, you can add:
///
/// UPDATE_ON_LAST();
///
/// And the values update, including post update function call, will be done only
/// once, after the engine receives the last UCI option, that is the one defined
/// and created as the last one, so the GUI should send the options in the same
/// order in which have been defined.
class Tune {
typedef void (PostUpdate) (); // Post-update function
Tune() { read_results(); }
Tune(const Tune&) = delete;
void operator=(const Tune&) = delete;
void read_results();
static Tune& instance() { static Tune t; return t; } // Singleton
// Use polymorphism to accomodate Entry of different types in the same vector
struct EntryBase {
virtual ~EntryBase() = default;
virtual void init_option() = 0;
virtual void read_option() = 0;
};
template<typename T>
struct Entry : public EntryBase {
static_assert(!std::is_const<T>::value, "Parameter cannot be const!");
static_assert( std::is_same<T, int>::value
|| std::is_same<T, Value>::value
|| std::is_same<T, Score>::value
|| std::is_same<T, PostUpdate>::value, "Parameter type not supported!");
Entry(const std::string& n, T& v, const SetRange& r) : name(n), value(v), range(r) {}
void operator=(const Entry&) = delete; // Because 'value' is a reference
void init_option() override;
void read_option() override;
std::string name;
T& value;
SetRange range;
};
// Our facilty to fill the container, each Entry corresponds to a parameter to tune.
// We use variadic templates to deal with an unspecified number of entries, each one
// of a possible different type.
static std::string next(std::string& names, bool pop = true);
int add(const SetRange&, std::string&&) { return 0; }
template<typename T, typename... Args>
int add(const SetRange& range, std::string&& names, T& value, Args&&... args) {
list.push_back(std::unique_ptr<EntryBase>(new Entry<T>(next(names), value, range)));
return add(range, std::move(names), args...);
}
// Template specialization for arrays: recursively handle multi-dimensional arrays
template<typename T, size_t N, typename... Args>
int add(const SetRange& range, std::string&& names, T (&value)[N], Args&&... args) {
for (size_t i = 0; i < N; i++)
add(range, next(names, i == N - 1) + "[" + std::to_string(i) + "]", value[i]);
return add(range, std::move(names), args...);
}
// Template specialization for SetRange
template<typename... Args>
int add(const SetRange&, std::string&& names, SetRange& value, Args&&... args) {
return add(value, (next(names), std::move(names)), args...);
}
// Template specialization for BoolConditions
template<typename... Args>
int add(const SetRange& range, std::string&& names, BoolConditions& cond, Args&&... args) {
for (size_t size = cond.values.size(), i = 0; i < size; i++)
add(cond.range, next(names, i == size - 1) + "_" + std::to_string(i), cond.values[i]);
return add(range, std::move(names), args...);
}
std::vector<std::unique_ptr<EntryBase>> list;
public:
template<typename... Args>
static int add(const std::string& names, Args&&... args) {
return instance().add(SetDefaultRange, names.substr(1, names.size() - 2), args...); // Remove trailing parenthesis
}
static void init() { for (auto& e : instance().list) e->init_option(); read_options(); } // Deferred, due to UCI::Options access
static void read_options() { for (auto& e : instance().list) e->read_option(); }
static bool update_on_last;
};
// Some macro magic :-) we define a dummy int variable that compiler initializes calling Tune::add()
#define STRINGIFY(x) #x
#define UNIQUE2(x, y) x ## y
#define UNIQUE(x, y) UNIQUE2(x, y) // Two indirection levels to expand __LINE__
#define TUNE(...) int UNIQUE(p, __LINE__) = Tune::add(STRINGIFY((__VA_ARGS__)), __VA_ARGS__)
#define UPDATE_ON_LAST() bool UNIQUE(p, __LINE__) = Tune::update_on_last = true
// Some macro to tune toggling of boolean conditions
#define CONDITION(x) (Conditions.binary[__COUNTER__] || (x))
#define TUNE_CONDITIONS() int UNIQUE(c, __LINE__) = (Conditions.init(__COUNTER__), 0); \
TUNE(Conditions, set_conditions)
#endif // #ifndef TUNE_H_INCLUDED
|