1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
|
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifndef PARALLELCOMPUTEGRIDSPLITING_H
#define PARALLELCOMPUTEGRIDSPLITING_H
#include <memory>
#include <array>
#include <functional>
#include <boost/mpi.hpp>
#include <boost/mpi/collectives.hpp>
#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <Eigen/Dense>
#include "StOpt/core/utils/primeNumber.h"
#include "StOpt/core/utils/eigenSerialization.h"
#include "StOpt/core/parallelism/ParallelHiter.h"
/** \file ParallelComputeGridSplitting.h
* \brief A multidimensional Cartesian grid split is achieved between processors
* Data are spread on a grid (GRID1) local to the processor.
* Different cases are possible :
* -Each processor may need to get from a grid (GRID3) the data for an extended grid (GRID2) defined from grid GRID1
* -Each processor may need to get from a grid (GRID3) the data for an extended grid (GRID2) defined from grid GRID3
* -Each processor needs to get the data on another grid (GRID2) (GRID3 identical to GRID1)
* Needed data from other processors are sent and received.
* see article "Stochastic control optimization & simulation applied to energy management:
* From 1-D to N-D problem distributions, on clusters, supercomputers and Grids "
* by Vialle, Warin, Mercier
* \author Xavier Warin
*/
namespace StOpt
{
/// \brief Optimal split of the grid
/// The dimension with higher number of point is first split recursively
/// \param p_initDimension number of meshes in each direction
/// \param p_bdimToSplit for each dimension, true if the dimension should be split
/// \param p_world MPI communicator
/// \return splitting of the grid in each dimension
Eigen::ArrayXi paraOptimalSplitting(const Eigen::ArrayXi &p_initDimension, const Eigen::Array< bool, Eigen::Dynamic, 1> &p_bdimToSplit, const boost::mpi::communicator &p_world);
/// \brief Split the grid and give the grid for a given processor
/// \param p_grid Give the current grid
/// \param p_splittingRatio For each dimension give the splitting ratio
/// \param p_iProc Processor number
/// \param p_world MPI communicator
/// \return splitting of the grid in each dimension
Eigen::ArrayXi paraOptimalSplitting(const Eigen::ArrayXi &p_initDimension, const Eigen::Array< bool, Eigen::Dynamic, 1> &p_bdimToSplit, const boost::mpi::communicator &p_world);
/// \brief Split the grid and give the grid for a given processor
/// \param p_grid Give the current grid
/// \param p_splittingRatio For each dimension give the splitting ratio
/// \param p_iProc Processor number
/// \return grid owned by the processor
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > paraSplitComputationGridsProc(const Eigen::ArrayXi &p_grid,
const Eigen::ArrayXi &p_splittingRatio, const int &p_iProc);
/// \class ParallelComputeGridSplitting ParallelComputeGridSplitting.h
/// Split the grids of point to split work between processors
class ParallelComputeGridSplitting
{
private :
size_t m_nDim ; ///< dimension of the hypercube
int m_nbProcessorUsed; ///< Number of processors used in parallel
int m_nbProcessorUsedPrev; ///< Number of processors used in parallel at previous step
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > m_meshPerProc ; ///< For each processor (column) , each stock number (row), store the meshes owned by the processor
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > m_meshPerProcOldGrid ; ///< For each processor (column) , each stock number (row), store the meshes owned by the processor at previous iteration
boost::mpi::communicator m_world ; ///< MPI communicator
// for current processor defines extended grid for all processors (GRID2)
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > m_extendGridProcOldGrid;
// size of extended array for current processor
int m_iSizeExtendedArray ;
// To receive data
// store the Hcube to be received
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > m_gridComingFromProcessor;
// store if receiving from other processor
std::vector< bool> m_bIntersecHCubeRec;
// store Hcube to be send to other processors
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > m_gridToSendToProcessor;
// store if sending data to other processor
std::vector< bool> m_bIntersecHCubeSend;
/// \brief Compute the intersection of Hypercubes (grids) p_hCube1, p_hCube2
/// \param p_hCube1 Hypercube 1
/// \param p_hCube2 Hypercube 2
/// \param p_bIntersectionFlag true if non empty intersection
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > paraInterHCube(const Eigen::Ref<const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > > &p_hCube1,
const Eigen::Ref<const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > > &p_hCube2,
bool &p_bIntersectionFlag);
/// \brief Intersect data from different grids
/// \param p_dataToIntersect Data on grid used to intersect
/// \param p_gridToIntersectWith Grid associated to dataToIntersect
/// \param p_grid Grid to intersect with p_gridToIntersectWith
/// \param p_data Data resulting from intersection of the grids
/// \param p_firstDimData Size of the first dimension of p_tabOwnedByProcessor if allocated
/// \param p_gridIntersected Hypercube resulting from intersection
template< typename T>
void paraIntersecDataHyperCube(const Eigen::Ref < const Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic > > &p_dataToIntersect,
const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > &p_gridToIntersectWith,
const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > &p_grid,
Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic > &p_data,
const int &p_firstDimData,
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > &p_gridIntersected)
{
bool bIntersectionFlag;
p_gridIntersected = paraInterHCube(p_gridToIntersectWith, p_grid, bIntersectionFlag);
int isize = 1 ;
for (size_t id = 0 ; id < m_nDim ; ++id)
isize *= p_gridIntersected(id)[1] - p_gridIntersected(id)[0];
p_data.resize(p_firstDimData, isize);
ParallelHiter hiter(p_gridIntersected, p_gridToIntersectWith);
int segment = hiter.segmentSize();
int iposStock = 0;
while (hiter.isValid())
{
int iposIter = hiter.get();
p_data.block(0, iposStock, p_firstDimData, segment) = p_dataToIntersect.block(0, iposIter, p_firstDimData, segment);
iposStock += segment;
hiter.next();
}
}
/// \brief Compute the routing plan
/// That is Hypercube to send to each processor and the HyperCube to receive from other processor
/// \param p_gridNeededPerProc Grid needed by each processor (index by processor)
/// \param p_colNeededPerProc Number of columns of p_gridNeededPerProc to consider
/// \param p_bIntersecHCubeRecLOC True if current processor receives data from current processor
/// \param p_bIntersecHCubeSendLoc True if current processor sends to processor p
/// \param p_gridComingFromProcessorLoc vector of grids coming from other processors
/// \param p_gridToSendToProcessorLoc vector grid of points to send to other processor
void paraRoutingSchedule(const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_gridNeededPerProc,
const int &p_colNeededPerProc,
std::vector<bool> &p_bIntersecHCubeRecLoc,
std::vector<bool> &p_bIntersecHCubeSendLoc,
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_gridComingFromProcessorLoc,
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_gridToSendToProcessorLoc);
/// \brief Execute the previously calculated routing
/// \param p_bIntersecHCubeRecLoc True if current processor receives data from current processor
/// \param p_bIntersecHCubeSendLoc True if current processor sends to processor p
/// \param p_gridComingFromProcessorLoc vector of grids coming from other processors
/// \param p_gridToSendToProcessorLoc vector grid of points to send to other processor
/// \param p_tabOwnedByProcessor Array owned by the processor
/// \param p_firstDimData Size of the first dimension of p_tabOwnedByProcessor if allocated
/// \param p_tabReceiveFromOther Array coming from other processor
/// T can be short int, int, double , float
template< typename T>
void paraRoutingExec(const std::vector<bool> &p_bIntersecHCubeRecLoc,
const std::vector<bool> &p_bIntersecHCubeSendLoc,
const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_gridComingFromProcessorLoc,
const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_gridToSendToProcessorLoc,
const Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic > &p_tabOwnedByProcessor,
const int &p_firstDimData,
std::vector< std::shared_ptr< Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic > > > &p_tabReceiveFromOther)
{
// Size of communicator
int iRecSize = 0 ;
for (int iproc = 0 ; iproc < m_world.size() ; ++iproc)
if (iproc < static_cast<int>(p_bIntersecHCubeRecLoc.size()))
if ((p_bIntersecHCubeRecLoc[iproc]) && (iproc != m_world.rank())) iRecSize++;
std::vector< boost::mpi::request > reqRec(iRecSize);
int iRec = 0 ;
// only one message right now (communication are not spread)
for (int iproc = 0 ; iproc < static_cast<int>(p_bIntersecHCubeRecLoc.size()) ; ++iproc)
{
// receive
if ((p_bIntersecHCubeRecLoc[iproc]) && (iproc != m_world.rank()))
{
// Number of mesh point associated
int nbPointRec = 1;
for (int idim = 0 ; idim < p_gridComingFromProcessorLoc.rows() ; ++idim)
{
nbPointRec *= p_gridComingFromProcessorLoc(idim, iproc)[1] - p_gridComingFromProcessorLoc(idim, iproc)[0];
}
p_tabReceiveFromOther[iproc] = std::make_shared< Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic > >(p_firstDimData, nbPointRec);
// communication
int imesg_iproc = 0;
// receive the data from other processors
reqRec[iRec++] = m_world.irecv(iproc, imesg_iproc++, *p_tabReceiveFromOther[iproc]);
}
}
// send
// Array for sending to other processors
std::vector< std::shared_ptr< Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic > > > tabSend(m_world.size());
int iSendSize = 0 ;
for (int iproc = 0 ; iproc < m_world.size() ; ++iproc)
if (iproc < static_cast<int>(p_bIntersecHCubeSendLoc.size()))
if ((p_bIntersecHCubeSendLoc[iproc]) && (iproc != m_world.rank())) iSendSize++ ;
std::vector< boost::mpi::request > reqSend(iSendSize);
int iSend = 0 ;
for (int iproc = 0 ; iproc < static_cast<int>(p_bIntersecHCubeSendLoc.size()) ; ++iproc)
{
if ((p_bIntersecHCubeSendLoc[iproc]) && (iproc != m_world.rank()))
{
ParallelHiter hiter(p_gridToSendToProcessorLoc.col(iproc), m_meshPerProcOldGrid.col(m_world.rank()));
// - compute the number of data to send
int nbPointSend = hiter.hCubeSize();
tabSend[iproc] = std::make_shared<Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic > >(p_firstDimData, nbPointSend);
// copy HyperCube Data MPI operation
int segment = hiter.segmentSize();
int iposStock = 0;
while (hiter.isValid())
{
int iposIter = hiter.get();
tabSend[iproc]->block(0, iposStock, p_firstDimData, segment) = p_tabOwnedByProcessor.block(0, iposIter, p_firstDimData, segment);
iposStock += segment;
hiter.next();
}
// send
int imesg_iproc = 0;
// Communications
reqSend[iSend++] = m_world.isend(iproc, imesg_iproc++, * tabSend[iproc]);
}
}
boost::mpi::wait_all(reqRec.begin(), reqRec.end());
boost::mpi::wait_all(reqSend.begin(), reqSend.end());
}
/// \brief Intersect with itself
/// \param p_gridSendingFromItself Grids coming a processor to itself
/// \param p_tabOwnedByProcessor Array owned by processor
/// \param p_firstDimData Size of the first dimension of p_tabOwnedByProcessor if allocated
/// \param p_gridTarget Target grid to fill (so to intersect with p_gridSendingFromItself )
/// \param p_tabOwnedByProcessorExtended Array extended with contribution from other processor
template<typename T>
void paraIntersecWithItself(const Eigen::Ref<const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > > &p_gridSendingFromItself,
const Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic > &p_tabOwnedByProcessor,
const int &p_firstDimData,
const Eigen::Ref<const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > > &p_gridTarget,
Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic > &p_tabOwnedByProcessExtended)
{
ParallelHiter hiter(p_gridSendingFromItself, p_gridTarget);
// copy HyperCube
int segment = hiter.segmentSize();
int iposStock = 0;
while (hiter.isValid())
{
int iposIter = hiter.get();
p_tabOwnedByProcessExtended.block(0, iposIter, p_firstDimData, segment) = p_tabOwnedByProcessor.block(0, iposStock, p_firstDimData, segment);
iposStock += segment;
hiter.next();
}
}
/// \brief Unpack data previously sent from other processor and fill the Array value
/// \param p_tabReceiveFromOther All array portions coming from other processors to unpack
/// \param p_firstDimData Size of the first dimension of p_tabReceiveFromOther if allocated
/// \param p_bIntersecHCubeRecLoc True if current processor receive data from current processor
/// \param p_gridComingFromProcessorLoc vector of grids coming from other processors
/// \param p_gridTarget Target grid to fill
/// \param p_tabOwnedByProcessExtended Extended array of data owned by processor
template< typename T>
void paraUnpackData(const std::vector< std::shared_ptr< Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic > > > &p_tabReceiveFromOther,
const int &p_firstDimData,
const std::vector<bool> &p_bIntersecHCubeRecLoc,
const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_gridComingFromProcessorLoc,
const Eigen::Ref<const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > > &p_gridTarget,
Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic > &p_tabOwnedByProcessExtended)
{
for (int iproc = 0 ; iproc < static_cast<int>(p_bIntersecHCubeRecLoc.size()) ; ++iproc)
{
if ((iproc != m_world.rank()) && (p_bIntersecHCubeRecLoc[iproc]))
{
ParallelHiter hiter(p_gridComingFromProcessorLoc.col(iproc), p_gridTarget);
int segment = hiter.segmentSize();
int iposStock = 0;
while (hiter.isValid())
{
int iposIter = hiter.get();
p_tabOwnedByProcessExtended.block(0, iposIter, p_firstDimData, segment) = p_tabReceiveFromOther[iproc]->block(0, iposStock, p_firstDimData, segment);
iposStock += segment;
hiter.next();
}
}
}
}
public :
/// \brief default : case with GRID1 and GRID2
/// \param p_initialDimension Vector of number of points in each dimension
/// \param p_gridCalcExt Permits to calculated extended grid for a given grid
/// \param p_splittingRatio For each dimension define how to split the mesh
/// \param p_world MPI communicator
ParallelComputeGridSplitting(const Eigen::ArrayXi &p_initialDimension,
const std::function< Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 >(const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > &) > &p_gridCalcExt,
const Eigen::ArrayXi &p_splittingRatio, const boost::mpi::communicator &p_world);
/// \brief Here constructor with GRID1, GRID2 and GRID3
/// \param p_initialDimension Vector of grid discretization for GRID1
/// \param p_initialDimensionPrev Vector of grid discretization for GRID3
/// \param p_gridCalcExt Permits to calculated extended grid GRID2 from GRID1
/// \param p_splittingRatio For each dimension define how to split the mesh at the current step
/// \param p_splittingRatioPrev For each dimension define how to split the mesh at the previous step
/// \param p_world MPI communicator
ParallelComputeGridSplitting(const Eigen::ArrayXi &p_initialDimension, const Eigen::ArrayXi &p_initialDimensionPrev,
const std::function< Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 >(const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > &) > &p_gridCalcExt,
const Eigen::ArrayXi &p_splittingRatio,
const Eigen::ArrayXi &p_splittingRatioPrev, const boost::mpi::communicator &p_world);
/// \brief Last constructor used in simulation : no extended grid created
/// Only recalculate the repartition between processor of the grid
/// \param p_initialDimension Vector of the problem dimension
/// \param p_splittingRatio For each dimension define how to split the mesh so that prod( p_splittingRatio)
/// \param p_world MPI communicator
ParallelComputeGridSplitting(const Eigen::ArrayXi &p_initialDimension,
const Eigen::ArrayXi &p_splittingRatio, const boost::mpi::communicator &p_world);
/// Get grid calculated by current processor
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > getCurrentCalculationGrid() const;
/// Get grid calculated by current processor previous date
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > getPreviousCalculationGrid() const;
/// Get Current grid per processor
const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &getCurrentCalculationGridPerProc();
/// Get number of processor used
int getNbProcessorUsed() const ;
/// Get number of processor used at the previous step
int getNbProcessorUsedPrev() const ;
/// \brief Get extended grid used by current processor
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > getExtendedGridProcOldGrid() const ;
/// \brief Calculate an array value extended on a grid extended
/// \param p_tabOwnedByProcess Array of data owned by processor
/// \return Extended array of data needed by processor
template< typename T>
Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic> runOneStep(const Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic> &p_tabOwnedByProcess)
{
// get row associated to returned array
int firstDimSize = p_tabOwnedByProcess.rows();
boost::mpi::broadcast(m_world, firstDimSize, 0);
// allocate new array
Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic> tabOwnedByProcessExtended(firstDimSize, m_iSizeExtendedArray);
// Array to receive from other processors
std::vector< std::shared_ptr< Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic> > > tabReceiveFromOther(m_world.size());
// routing achieved :
paraRoutingExec<T>(m_bIntersecHCubeRec, m_bIntersecHCubeSend, m_gridComingFromProcessor, m_gridToSendToProcessor, p_tabOwnedByProcess, firstDimSize, tabReceiveFromOther);
// use local mesh : if it has data to retrieve from its own data
if (m_world.rank() < static_cast<int>(m_bIntersecHCubeRec.size()))
if (m_bIntersecHCubeRec[m_world.rank()])
{
// now if necessary intersect the data with on the target grid
int isize = 1 ;
for (size_t id = 0 ; id < m_nDim ; ++id)
isize *= m_gridToSendToProcessor(id, m_world.rank())[1] - m_gridToSendToProcessor(id, m_world.rank())[0];
Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic> data(p_tabOwnedByProcess.rows(), isize);
ParallelHiter hiter(m_gridToSendToProcessor.col(m_world.rank()), m_meshPerProcOldGrid.col(m_world.rank()));
int segment = hiter.segmentSize();
int iposStock = 0;
while (hiter.isValid())
{
int iposIter = hiter.get();
data.block(0, iposStock, data.rows(), segment) = p_tabOwnedByProcess.block(0, iposIter, data.rows(), segment);
iposStock += segment;
hiter.next();
}
paraIntersecWithItself<T>(m_gridToSendToProcessor.col(m_world.rank()), data, firstDimSize, m_extendGridProcOldGrid.col(m_world.rank()), tabOwnedByProcessExtended);
}
// get back to cash flow object all the data that where stored in tabReceiveFromOther
paraUnpackData<T>(tabReceiveFromOther, firstDimSize, m_bIntersecHCubeRec, m_gridComingFromProcessor, m_extendGridProcOldGrid.col(m_world.rank()), tabOwnedByProcessExtended);
return tabOwnedByProcessExtended;
}
/// \brief Calculate an array value extended on a grid extended (one dimensional array)
/// \param p_tabOwnedByProcess Array of data owned by processor
/// \return Extended array of data needed by processor
template< typename T>
Eigen::Array< T, Eigen::Dynamic, 1 > runOneStep(const Eigen::Array< T, Eigen::Dynamic, 1> &p_tabOwnedByProcess)
{
// call to previous runOneStep
Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic> tabOwnedByProcess = p_tabOwnedByProcess.transpose();
return runOneStep<T>(tabOwnedByProcess).transpose();
}
/// \brief Calculate an array of values extended on a grid extended
/// \param p_tabOwnedByProcess Array owned by processor
/// \param p_gridOnProc0 Grid on processor p_iReconsProc
/// \param p_iReconsProc Processor to reconstruct solution (default 0)
/// \return reconstructed array
template< typename T>
Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic > reconstruct(const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic > &p_tabOwnedByProcess,
const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > &p_gridOnProc0,
int p_iReconsProc = 0)
{
Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic > reconstructedArray;
if (m_world.rank() == p_iReconsProc)
{
int isizeRecons = 1 ;
for (size_t id = 0 ; id < m_nDim; ++id)
{
isizeRecons *= p_gridOnProc0(id)[1] - p_gridOnProc0(id)[0];
}
// allocate new array
reconstructedArray.resize(p_tabOwnedByProcess.rows(), isizeRecons);
}
// Array to receive from other processors
std::vector< std::shared_ptr< Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic > > > tabReceiveFromOther(m_world.size());
// local array for intersection, receive,send localization
std::vector<bool> bIntersecHCubeRecLoc;
std::vector<bool> bIntersecHCubeSendLoc;
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > gridComingFromProcessorLoc;
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > gridToSendToProcessorLoc;
// Routing
paraRoutingSchedule(p_gridOnProc0, 1, bIntersecHCubeRecLoc, bIntersecHCubeSendLoc, gridComingFromProcessorLoc, gridToSendToProcessorLoc);
// first dimension of data
int firstDimSize = p_tabOwnedByProcess.rows();
// routing achieved :
paraRoutingExec<T>(bIntersecHCubeRecLoc, bIntersecHCubeSendLoc, gridComingFromProcessorLoc, gridToSendToProcessorLoc, p_tabOwnedByProcess, firstDimSize, tabReceiveFromOther);
// only for processor p_ReconsProc
if (m_world.rank() == p_iReconsProc)
{
if (bIntersecHCubeRecLoc[p_iReconsProc])
{
// first intersect data owned by processor 0 with p_gridOnProc0
Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic > tabOwnedByProcessIntersec0;
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > gridIntersected;
paraIntersecDataHyperCube<T>(p_tabOwnedByProcess, m_meshPerProc.col(0), p_gridOnProc0, tabOwnedByProcessIntersec0, firstDimSize, gridIntersected);
// then
paraIntersecWithItself<T>(gridIntersected, tabOwnedByProcessIntersec0, firstDimSize, p_gridOnProc0, reconstructedArray);
}
// get back to cash flow object all the data that where stored in tabReceiveFromOther
paraUnpackData<T>(tabReceiveFromOther, firstDimSize, bIntersecHCubeRecLoc, gridComingFromProcessorLoc, p_gridOnProc0, reconstructedArray);
}
return reconstructedArray;
}
/// \brief Calculate an array of values extended on a grid extended (one dimensional array)
/// \param p_tabOwnedByProcess Array owned by processor
/// \param p_gridOnProc0 Grid on processor p_iReconsProc
/// \param p_iReconsProc Processor to reconstruct solution (default 0)
/// \return reconstructed array
template< typename T>
Eigen::Array<T, Eigen::Dynamic, 1> reconstruct(const Eigen::Array<T, Eigen::Dynamic, 1 > &p_tabOwnedByProcess,
const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > &p_gridOnProc0,
int p_iReconsProc = 0)
{
Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic> tabOwnedByProcess = p_tabOwnedByProcess.transpose();
Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic> ret = reconstruct(tabOwnedByProcess, p_gridOnProc0, p_iReconsProc).transpose();
if (ret.size())
return ret;
else
return Eigen::Array<T, Eigen::Dynamic, 1>();
}
/// Reconstruction for all processor together
/// \brief Calculate an array value extended on a grid extended
/// \param p_tabOwnedByProcess Array owned by processor
/// \param p_gridOnProc Grid needed on current processor
/// \return reconstructed array
template< typename T>
Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic > reconstructAll(const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic > &p_tabOwnedByProcess,
const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > &p_gridOnProc)
{
// to store all dimension needed by all processors
std::vector<int> DimPerProc;
std::vector<int> DimCurrentProc(2 * m_nDim);
for (size_t id = 0 ; id < m_nDim; ++id)
{
DimCurrentProc[id * 2] = p_gridOnProc(id)[0];
DimCurrentProc[id * 2 + 1] = p_gridOnProc(id)[1];
}
// mpi stuff
boost::mpi::all_gather<int>(m_world, DimCurrentProc.data(), 2 * m_nDim, DimPerProc);
// get size of first dimension (can be 0 for some processor)
int nSizeFirstDim = 0;
boost::mpi::all_reduce(m_world, static_cast<int>(p_tabOwnedByProcess.rows()), nSizeFirstDim, boost::mpi::maximum<int>());
// calculated extended grid for each processor
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > extendedGridProcLoc(m_nDim, m_world.size());
for (int ip = 0; ip < m_world.size(); ++ip)
for (size_t id = 0 ; id < m_nDim; ++id)
{
extendedGridProcLoc(id, ip)[0] = DimPerProc[ip * 2 * m_nDim + id * 2];
extendedGridProcLoc(id, ip)[1] = DimPerProc[ip * 2 * m_nDim + id * 2 + 1];
}
int iSizeExtendedArrayLoc = 1;
for (size_t id = 0 ; id < m_nDim; ++id)
iSizeExtendedArrayLoc *= extendedGridProcLoc(id, m_world.rank())[1] - extendedGridProcLoc(id, m_world.rank())[0];
// allocate new array
Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic > reconstructedArray(nSizeFirstDim, iSizeExtendedArrayLoc);
// array and vector needed locally ( add _loc to definition)
// store the ]cube to be received
Eigen::Array< std::array< int, 2 >, Eigen::Dynamic, Eigen::Dynamic > gridComingFromProcessorLoc;
// store if receiving from other processor
std::vector< bool> bIntersecHCubeRecLoc;
// store Hcube to be send to other processors
Eigen::Array< std::array< int, 2 >, Eigen::Dynamic, Eigen::Dynamic > gridToSendToProcessorLoc;
// store if sending data to other processor
std::vector< bool> bIntersecHCubeSendLoc;
// routing plan to be effected
paraRoutingSchedule(extendedGridProcLoc, m_world.size(), bIntersecHCubeRecLoc, bIntersecHCubeSendLoc,
gridComingFromProcessorLoc, gridToSendToProcessorLoc);
// Array to receive from other processors
std::vector< std::shared_ptr< Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic > > > tabReceiveFromOther(m_world.size());
// routing achieved :
paraRoutingExec<T>(bIntersecHCubeRecLoc, bIntersecHCubeSendLoc, gridComingFromProcessorLoc, gridToSendToProcessorLoc,
p_tabOwnedByProcess, nSizeFirstDim, tabReceiveFromOther);
// use local mesh : if it has data to retrieve from its own data
if (m_world.rank() < static_cast<int>(bIntersecHCubeRecLoc.size()))
if (bIntersecHCubeRecLoc[m_world.rank()])
{
// first intersect data owned by processor 0 with p_gridOnProc
Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic > tabOwnedByProcessIntersec;
Eigen::Array< std::array< int, 2 >, Eigen::Dynamic, 1 > gridIntersected(m_nDim);
paraIntersecDataHyperCube<T>(p_tabOwnedByProcess, m_meshPerProc.col(m_world.rank()), p_gridOnProc, tabOwnedByProcessIntersec, nSizeFirstDim, gridIntersected);
paraIntersecWithItself<T>(gridIntersected, tabOwnedByProcessIntersec, nSizeFirstDim, p_gridOnProc, reconstructedArray);
}
// get back to cash flow objet all the data that where stored in tabReceiveFromOther
paraUnpackData<T>(tabReceiveFromOther, nSizeFirstDim, bIntersecHCubeRecLoc, gridComingFromProcessorLoc, extendedGridProcLoc.col(m_world.rank()), reconstructedArray);
return reconstructedArray;
}
/// Reconstruction for all processor together for one dimensional array
/// \brief Calculate an array value extended on a grid extended
/// \param p_tabOwnedByProcess Array owned by processor
/// \param p_gridOnProc Grid needed on current processor
/// \return reconstructed array
template< typename T>
Eigen::Array<T, Eigen::Dynamic, 1 > reconstructAll(const Eigen::Array<T, Eigen::Dynamic, 1 > &p_tabOwnedByProcess,
const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, 1 > &p_gridOnProc)
{
Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic> tabOwnedByProcess = p_tabOwnedByProcess.transpose();
Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic> ret = reconstructAll(tabOwnedByProcess, p_gridOnProc).transpose();
if (ret.size())
return ret;
else
return Eigen::Array<T, Eigen::Dynamic, 1>();
}
};
}
#endif /* PARALLELCOMPUTEGRIDSPLITING_H */
|