File: SparseGridCubicBound.h

package info (click to toggle)
stopt 5.12%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,860 kB
  • sloc: cpp: 70,456; python: 5,950; makefile: 72; sh: 57
file content (459 lines) | stat: -rw-r--r-- 23,950 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifndef SPARSEGRIDCUBICBOUND_H
#define SPARSEGRIDCUBICBOUND_H
#include <Eigen/Dense>
#include "StOpt/core/sparse/sparseGridTypes.h"
#include "StOpt/core/sparse/SparseGridHierarDehierarBound.h"


/** \file SparseGridCubicBound.h
 * \brief cubicSparseBound Regroup hierarchization and dehierarchization for cubic sparse grids eliminating boundary points
 * \author Xavier Warin
 */
namespace StOpt
{
/// \defgroup Cubic Hierarchization and Deheriarchization with boundary points
/// \brief Regroup function used in hierarchization and dehierarchization for sparse grids without any points on the boundary and a cubic approximation per mesh
///@{

/// \class  Hierar1DCubicBound   SparseGridCubicBound.h
/// Hierarchization
class Hierar1DCubicBound: public HierarDehierarBound
{

protected :

    /// \brief Hierarchization in given dimension in 1D : general cubic
    /// \param p_levelCurrent                 Current level of the point
    /// \param p_positionCurrent              Current position of the point
    /// \param p_iterLevel                    Iteration on level
    /// \param p_idim                         Current dimension
    /// \param p_leftParentNodalValue         Left parent nodal value
    /// \param p_rightParentNodalValue        Right parent nodal value
    /// \param p_parentLinearHierarValue      Linear Hierarchical value of parent
    /// \param p_grandParentLinearHierarValue Linear Hierarchical value of grandparent
    /// \param p_dataSet                      Data structure with all the points
    /// \param p_nodalValues                  Nodal values
    /// \param p_hierarValues                 Hierarchical values
    template< class T, class TT>
    void recursive1DHierarchization(Eigen::ArrayXc &p_levelCurrent,
                                    Eigen::ArrayXui &p_positionCurrent,
                                    const  SparseSet::const_iterator &p_iterLevel,
                                    const unsigned int &p_idim,
                                    const T &p_leftParentNodalValue,
                                    const T &p_rightParentNodalValue,
                                    const T &p_parentLinearHierarValue,
                                    const T &p_grandParentLinearHierarValue,
                                    const SparseSet &p_dataSet,
                                    const TT &p_nodalValues,
                                    TT &p_hierarValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        // position
        int iposPoint = iterPosition->second;
        T valueMidle = DoubleOrArray()(p_nodalValues, iposPoint);
        // hierarchization
        T LinearHierar = valueMidle  - 0.5 * (p_leftParentNodalValue + p_rightParentNodalValue);
        int iBaseType = iNodeToFunc[p_positionCurrent(p_idim) % 4];
        // begin by linear
        DoubleOrArray().affect(p_hierarValues, iposPoint, LinearHierar + weightParent[iBaseType]*p_parentLinearHierarValue + weightGrandParent[iBaseType]*p_grandParentLinearHierarValue);
        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // left
        p_positionCurrent(p_idim) = 2 * oldPosition;
        recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild,  p_idim, p_leftParentNodalValue, valueMidle, LinearHierar, p_parentLinearHierarValue, p_dataSet, p_nodalValues,
                                          p_hierarValues);
        // right
        p_positionCurrent(p_idim) += 1;
        recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim,  valueMidle, p_rightParentNodalValue, LinearHierar, p_parentLinearHierarValue, p_dataSet, p_nodalValues,
                                          p_hierarValues);
        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;

    }

    /// \brief Hierarchization in given dimension in 1D quadratic
    /// \param p_levelCurrent                  Current level of the point
    /// \param p_positionCurrent               Current position of the point
    /// \param p_iterLevel                     Iteration on level
    /// \param p_idim                          Current dimension
    /// \param p_leftParentNodalValue          Left parent nodal value
    /// \param p_rightParentNodalValue         Right parent nodal value
    /// \param p_parentLinearHierarValue       Linear Hierarchical value of parent
    /// \param p_dataSet                       Data structure with all the points
    /// \param p_nodalValues                   Nodal values
    /// \param p_hierarValues                  Hierarchical values
    template< class T, class TT>
    void hierarchizationStep2(Eigen::ArrayXc &p_levelCurrent,
                              Eigen::ArrayXui &p_positionCurrent,
                              const  SparseSet::const_iterator &p_iterLevel,
                              const unsigned int &p_idim,
                              const T &p_leftParentNodalValue,
                              const T &p_rightParentNodalValue,
                              const T &p_parentLinearHierarValue,
                              const SparseSet &p_dataSet,
                              const TT &p_nodalValues,
                              TT &p_hierarValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        // position
        int iposPoint = iterPosition->second;
        T valueMidle = DoubleOrArray()(p_nodalValues, iposPoint);
        // hierarchization
        T LinearHierar = valueMidle  - 0.5 * (p_leftParentNodalValue + p_rightParentNodalValue);
        // quadratic
        DoubleOrArray().affect(p_hierarValues, iposPoint, LinearHierar - 0.25 * p_parentLinearHierarValue) ;

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // left
        p_positionCurrent(p_idim) = 2 * oldPosition;
        recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild,  p_idim, p_leftParentNodalValue, valueMidle, LinearHierar, p_parentLinearHierarValue,
                                          p_dataSet, p_nodalValues,  p_hierarValues);
        // right
        p_positionCurrent(p_idim) += 1;
        recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, valueMidle, p_rightParentNodalValue, LinearHierar, p_parentLinearHierarValue,
                                          p_dataSet, p_nodalValues,  p_hierarValues);

        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }


    /// \brief Hierarchization in given dimension in 1D (first step  : subtract constant value)
    /// \param p_levelCurrent                 Current level of the point
    /// \param p_positionCurrent              Current position of the point
    /// \param p_iterLevel                    Iteration on level
    /// \param p_idim                         Current dimension
    /// \param p_leftParentNodalValue         Left parent nodal value
    /// \param p_rightParentNodalValue        Right parent nodal value
    /// \param p_dataSet                      Data structure with all the points
    /// \param p_nodalValues                  Nodal values
    /// \param p_hierarValues                 Hierarchical values
    template< class T, class TT>
    void hierarchizationStep1(Eigen::ArrayXc &p_levelCurrent,
                              Eigen::ArrayXui &p_positionCurrent,
                              const  SparseSet::const_iterator &p_iterLevel,
                              const unsigned int &p_idim,
                              const T &p_leftParentNodalValue,
                              const T &p_rightParentNodalValue,
                              const SparseSet &p_dataSet,
                              const TT &p_nodalValues,
                              TT &p_hierarValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        // position
        int iposPoint = iterPosition->second;
        T valueMidle = DoubleOrArray()(p_nodalValues, iposPoint);
        // hierarchization
        T LinearHierar = valueMidle  - 0.5 * (p_leftParentNodalValue + p_rightParentNodalValue);
        // cubic
        DoubleOrArray().affect(p_hierarValues, iposPoint, LinearHierar) ;

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // left
        p_positionCurrent(p_idim) = 0;
        hierarchizationStep2<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, p_leftParentNodalValue, valueMidle, LinearHierar, p_dataSet, p_nodalValues,  p_hierarValues);
        // right
        p_positionCurrent(p_idim) = 1;
        hierarchizationStep2<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild,  p_idim, valueMidle, p_rightParentNodalValue, LinearHierar, p_dataSet, p_nodalValues, p_hierarValues);

        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;

    }

public :

    // default
    Hierar1DCubicBound() {}

    // operator for 1D Hierarchization
    /// \brief Hierarchization in given dimension in 1D
    /// \param p_levelCurrent                Current index of the point
    /// \param p_positionCurrent             Current level of the point
    /// \param p_iterLevel                     Iterator on current level
    /// \param p_idim                             Current dimension
    /// \param p_dataSet                   Data structure with all the points
    /// \param p_nodalValues      Nodal values
    /// \param p_hierarValues     Hierarchical values
    template< class T, class TT>
    void operator()(Eigen::ArrayXc &p_levelCurrent,
                    Eigen::ArrayXui &p_positionCurrent,
                    const  SparseSet::const_iterator &p_iterLevel,
                    const unsigned int &p_idim,
                    const SparseSet &p_dataSet,
                    const TT &p_nodalValues,
                    TT &p_hierarValues)
    {
        // get back boundary key in the dimension
        T leftValue ;
        T rightValue ;
        Eigen::ArrayXui  leftBound(p_positionCurrent) ;
        leftBound(p_idim) = 0;
        SparseLevel::const_iterator iterLeft = p_iterLevel->second.find(leftBound);
        if (iterLeft != p_iterLevel->second.end())
            leftValue = DoubleOrArray()(p_nodalValues, iterLeft->second);
        Eigen::ArrayXui  rightBound(p_positionCurrent);
        rightBound(p_idim) = 2;
        SparseLevel::const_iterator iterRight = p_iterLevel->second.find(rightBound);
        if (iterRight != p_iterLevel->second.end())
            rightValue = DoubleOrArray()(p_nodalValues, iterRight->second);

        hierarchizationStep1<T, TT>(p_levelCurrent, p_positionCurrent, p_iterLevel, p_idim, leftValue, rightValue,
                                    p_dataSet, p_nodalValues, p_hierarValues);

    }
};


/// \class Dehierar1DCubicBound SparseGridCubicBound.h
///  Dehierarchization for cubic with boundary points
class Dehierar1DCubicBound: public HierarDehierarBound
{
protected :

    /// \brief Dehierarchization 1D in given dimension (modified bound) (cubic so available after two level)
    /// \param p_levelCurrent                  Current index of the point
    /// \param p_positionCurrent               Current level of the point
    /// \param p_iterLevel                     Iterator on current level
    /// \param p_idim                           Current dimension
    /// \param p_leftParentHierarValue          Left parent nodal value
    /// \param p_rightParentHierarValue         Right parent nodal value
    /// \param p_linearHierarParent             Linear hierarchical value of parent
    /// \param p_linearHierarGrandParent        Linear Hierarchical value of parent
    /// \param p_dataSet                         Data structure with all the points
    /// \param p_hierarValues                    Hierarchical values
    /// \param p_nodalValues                     Nodal values
    template< class T, class TT>
    void recursive1DDehierarchization(Eigen::ArrayXc &p_levelCurrent,
                                      Eigen::ArrayXui &p_positionCurrent,
                                      const  SparseSet::const_iterator &p_iterLevel,
                                      const unsigned int &p_idim,
                                      const T &p_leftParentHierarValue,
                                      const T &p_rightParentHierarValue,
                                      const T &p_linearHierarParent,
                                      const T &p_linearHierarGrandParent,
                                      const SparseSet &p_dataSet,
                                      const TT &p_hierarValues,
                                      TT &p_nodalValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        // position
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        // position
        int iposPoint = iterPosition->second;
        T valueMidle = DoubleOrArray()(p_hierarValues, iposPoint);

        // do dehierarchization
        // calculation linear hierarchical coefficient
        int iBaseType = iNodeToFunc[p_positionCurrent(p_idim) % 4];
        T LinearHierarchical = valueMidle - (weightParent[iBaseType] * p_linearHierarParent + weightGrandParent[iBaseType] * p_linearHierarGrandParent);
        valueMidle = LinearHierarchical + 0.5 * (p_leftParentHierarValue + p_rightParentHierarValue);
        DoubleOrArray().affect(p_nodalValues, iposPoint, valueMidle);

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // left
        p_positionCurrent(p_idim) = 2 * oldPosition;
        recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_leftParentHierarValue, valueMidle, LinearHierarchical, p_linearHierarParent,
                                            p_dataSet, p_hierarValues, p_nodalValues);
        // right
        p_positionCurrent(p_idim) += 1;
        recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild,  p_idim, valueMidle, p_rightParentHierarValue, LinearHierarchical, p_linearHierarParent,
                                            p_dataSet, p_hierarValues, p_nodalValues);

        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }

    /// \brief Dehierarchization 1D in given dimension (modified bound, step 2 quadratic)
    /// \param p_levelCurrent                Current index of the point
    /// \param p_positionCurrent             Current level of the point
    /// \param p_iterLevel                   Iterator on current level
    /// \param p_idim                        Current dimension
    /// \param p_leftParentHierarValue         Left parent nodal value
    /// \param p_rightParentHierarValue        Right parent nodal value
    /// \param p_linearHierarParent            Linear hierarchical value of parent
    /// \param p_dataSet                     Data structure with all the points
    /// \param p_hierarValues                Hierarchical values
    /// \param p_nodalValues                Nodal values
    template< class T, class TT>
    void dehierarchizationStep2(Eigen::ArrayXc &p_levelCurrent,
                                Eigen::ArrayXui &p_positionCurrent,
                                const  SparseSet::const_iterator &p_iterLevel,
                                const unsigned int &p_idim,
                                const T &p_leftParentHierarValue,
                                const T &p_rightParentHierarValue,
                                const T &p_linearHierarParent,
                                const SparseSet &p_dataSet,
                                const TT &p_hierarValues,
                                TT &p_nodalValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        // position
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        // position
        int iposPoint = iterPosition->second;
        T valueMidle = DoubleOrArray()(p_hierarValues, iposPoint);

        // do dehierarchization
        // calculation linear hierarchical coefficient
        T LinearHierarchical = valueMidle + 0.25 * p_linearHierarParent;
        valueMidle = LinearHierarchical + 0.5 * (p_leftParentHierarValue + p_rightParentHierarValue);
        DoubleOrArray().affect(p_nodalValues, iposPoint, valueMidle);

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);
        // left
        p_positionCurrent(p_idim) = 2 * oldPosition;
        recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, p_leftParentHierarValue, valueMidle, LinearHierarchical, p_linearHierarParent,
                                            p_dataSet, p_hierarValues, p_nodalValues);
        // right
        p_positionCurrent(p_idim) += 1;
        recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, valueMidle, p_rightParentHierarValue, LinearHierarchical, p_linearHierarParent,
                                            p_dataSet, p_hierarValues, p_nodalValues);

        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }

    /// \brief Dehierarchization 1D in given dimension (modified bound, step 2 quadratic)
    /// \param p_levelCurrent                 Current level of the point
    /// \param p_positionCurrent              Current position of the point
    /// \param p_iterLevel                          Iteration on level
    /// \param p_idim                             Current dimension
    /// \param p_leftParentHierarValue          Left parent nodal value
    /// \param p_rightParentHierarValue         Right parent nodal value
    /// \param p_dataSet                   Data structure with all the points
    /// \param p_hierarValues     Hierarchical values
    /// \param p_nodalValues      Nodal values
    template< class T, class TT>
    void dehierarchizationStep1(Eigen::ArrayXc &p_levelCurrent,
                                Eigen::ArrayXui &p_positionCurrent,
                                const  SparseSet::const_iterator &p_iterLevel,
                                const unsigned int &p_idim,
                                const T &p_leftParentHierarValue,
                                const T &p_rightParentHierarValue,
                                const SparseSet   &p_dataSet,
                                const TT &p_hierarValues,
                                TT &p_nodalValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        // position
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        // position
        int iposPoint = iterPosition->second;
        T LinearHierarchical =  DoubleOrArray()(p_hierarValues, iposPoint);

        // do dehierarchization
        // calculation linear hierarchical coefficient
        T valueMidle = LinearHierarchical + 0.5 * (p_leftParentHierarValue + p_rightParentHierarValue);
        DoubleOrArray().affect(p_nodalValues, iposPoint, valueMidle);

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);

        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // left
        p_positionCurrent(p_idim) = 0;
        dehierarchizationStep2<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_leftParentHierarValue, valueMidle, LinearHierarchical,
                                      p_dataSet, p_hierarValues, p_nodalValues);
        // right
        p_positionCurrent(p_idim) = 1;
        dehierarchizationStep2<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, valueMidle, p_rightParentHierarValue, LinearHierarchical,
                                      p_dataSet, p_hierarValues, p_nodalValues);

        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }


public :

    Dehierar1DCubicBound() {}

    /// \brief Dehierarchization 1D in given dimension
    /// \param p_levelCurrent                 Current level of the point
    /// \param p_positionCurrent              Current position of the point
    /// \param p_iterLevel                          Iteration on level
    /// \param p_idim                             Current dimension
    /// \param p_dataSet                   Data structure with all the points
    /// \param p_hierarValues     Hierarchical values
    /// \param p_nodalValues      Nodal values
    template< class T, class TT>
    void operator()(Eigen::ArrayXc &p_levelCurrent,
                    Eigen::ArrayXui &p_positionCurrent,
                    const  SparseSet::const_iterator &p_iterLevel,
                    const unsigned int &p_idim,
                    const SparseSet &p_dataSet,
                    const TT &p_hierarValues,
                    TT &p_nodalValues)
    {
        // get back boundary key in the dimension
        T leftValue ;
        T rightValue ;
        Eigen::ArrayXui  leftBound(p_positionCurrent) ;
        leftBound(p_idim) = 0;
        SparseLevel::const_iterator iterLeft = p_iterLevel->second.find(leftBound);
        if (iterLeft != p_iterLevel->second.end())
            leftValue = DoubleOrArray()(p_hierarValues, iterLeft->second);
        Eigen::ArrayXui  rightBound(p_positionCurrent);
        rightBound(p_idim) = 2;
        SparseLevel::const_iterator iterRight = p_iterLevel->second.find(rightBound);
        if (iterRight != p_iterLevel->second.end())
            rightValue = DoubleOrArray()(p_hierarValues, iterRight->second);   // get back boundary key in the dimension

        dehierarchizationStep1<T, TT>(p_levelCurrent, p_positionCurrent, p_iterLevel, p_idim, leftValue, rightValue, p_dataSet, p_hierarValues, p_nodalValues);
    }
};
///@}
}
#endif /* SPARSEGRIDCUBICNONOUND_H */