1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifndef SPARSEGRIDLINBOUND_H
#define SPARSEGRIDLINBOUND_H
#include <Eigen/Dense>
#include "StOpt/core/sparse/sparseGridTypes.h"
#include "StOpt/core/sparse/SparseGridHierarDehierarBound.h"
/** \file SparseGridLinBound.h
* \brief Regroup hierarchization and dehierarchization for linear sparse grids
* \author Xavier Warin
*/
namespace StOpt
{
/// \defgroup linearSparseBound Linear Hierarchization and Deheriarchization with boundary points
/// \brief Regroup function used in hierarchization and dehierarchization for sparse grids with points on the boundary and a linear approximation per mesh
///@{
/// \class Hierar1DLinBound SparseGridLinBound.h
/// Hierarchization
class Hierar1DLinBound : public HierarDehierarBound
{
protected :
/// \brief Hierarchization in given dimension in 1D
/// \param p_levelCurrent current index of the point
/// \param p_positionCurrent current level of the point
/// \param p_iterLevel iterator on level
/// \param p_idim current dimension
/// \param p_leftParentNodalValue Left parent nodal value
/// \param p_rightParentNodalValue Right parent nodal value
/// \param p_dataSet Data structure with all the points
/// \param p_nodalValues Nodal values
/// \param p_hierarValues Hierarchical values
template< class T, class TT>
void recursive1DHierarchization(Eigen::ArrayXc &p_levelCurrent,
Eigen::ArrayXui &p_positionCurrent,
const SparseSet::const_iterator &p_iterLevel,
const unsigned int &p_idim,
const T &p_leftParentNodalValue,
const T &p_rightParentNodalValue,
const SparseSet &p_dataSet,
const TT &p_nodalValues,
TT &p_hierarValues)
{
if (p_iterLevel == p_dataSet.end())
return ;
// position
SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
if (iterPosition == p_iterLevel->second.end())
return ;
// position
int iposPoint = iterPosition->second;
T valueMidle = DoubleOrArray()(p_nodalValues, iposPoint);
// hierarchization
DoubleOrArray().affect(p_hierarValues, iposPoint, valueMidle - 0.5 * (p_leftParentNodalValue + p_rightParentNodalValue));
char oldLevel = p_levelCurrent(p_idim);
unsigned int oldPosition = p_positionCurrent(p_idim);
// child level
p_levelCurrent(p_idim) += 1;
SparseSet::const_iterator iterLevelChild = p_dataSet.find(p_levelCurrent);
// left
p_positionCurrent(p_idim) = 2 * oldPosition;
recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_leftParentNodalValue, valueMidle, p_dataSet, p_nodalValues, p_hierarValues);
// right
p_positionCurrent(p_idim) += 1;
recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, valueMidle, p_rightParentNodalValue, p_dataSet, p_nodalValues, p_hierarValues);
p_positionCurrent(p_idim) = oldPosition;
p_levelCurrent(p_idim) = oldLevel;
}
/// \brief Hierarchization in given dimension in 1D
/// \param p_levelCurrent Current level of the point
/// \param p_positionCurrent Current position of the point
/// \param p_iterLevel Iterator on level
/// \param p_idim Current dimension
/// \param p_leftParentNodalValue Left parent nodal value
/// \param p_rightParentNodalValue Right parent nodal value
/// \param p_dataSet Data structure with all the points
/// \param p_nodalValues Nodal values
/// \param p_hierarValues Hierarchical values
template< class T, class TT>
void HierarchizationFirstLevel(Eigen::ArrayXc &p_levelCurrent,
Eigen::ArrayXui &p_positionCurrent,
const SparseSet::const_iterator &p_iterLevel,
const unsigned int &p_idim,
const T &p_leftParentNodalValue,
const T &p_rightParentNodalValue,
const SparseSet &p_dataSet,
const TT &p_nodalValues,
TT &p_hierarValues)
{
if (p_iterLevel == p_dataSet.end())
return ;
// position
SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
if (iterPosition == p_iterLevel->second.end())
return ;
// position
int iposPoint = iterPosition->second;
T valueMidle = DoubleOrArray()(p_nodalValues, iposPoint);
// hierarchization
DoubleOrArray().affect(p_hierarValues, iposPoint, valueMidle - 0.5 * (p_leftParentNodalValue + p_rightParentNodalValue));
char oldLevel = p_levelCurrent(p_idim);
unsigned int oldPosition = p_positionCurrent(p_idim);
// child level
p_levelCurrent(p_idim) += 1;
SparseSet::const_iterator iterLevelChild = p_dataSet.find(p_levelCurrent);
// left
p_positionCurrent(p_idim) = 0;
recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_leftParentNodalValue, valueMidle, p_dataSet, p_nodalValues, p_hierarValues);
// right
p_positionCurrent(p_idim) = 1;
recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, valueMidle, p_rightParentNodalValue, p_dataSet, p_nodalValues, p_hierarValues);
p_positionCurrent(p_idim) = oldPosition;
p_levelCurrent(p_idim) = oldLevel;
}
public :
// default
Hierar1DLinBound() {}
// operator for 1D Hierarchization
/// \brief Hierarchization in given dimension in 1D
/// \param p_levelCurrent Current level of the point
/// \param p_positionCurrent Current position of the point in the current level
/// \param p_iterLevel Iterator on current level
/// \param p_idim Current dimension
/// \param p_dataSet Data structure with all the points
/// \param p_nodalValues Nodal values
/// \param p_hierarValues Hierarchical values
template< class T, class TT>
void operator()(Eigen::ArrayXc &p_levelCurrent,
Eigen::ArrayXui &p_positionCurrent,
const SparseSet::const_iterator &p_iterLevel,
const unsigned int &p_idim,
const SparseSet &p_dataSet,
const TT &p_nodalValues,
TT &p_hierarValues)
{
// left and right value
T leftValue ;
T rightValue ;
Eigen::ArrayXui leftBound(p_positionCurrent) ;
leftBound(p_idim) = 0;
SparseLevel::const_iterator iterLeft = p_iterLevel->second.find(leftBound);
if (iterLeft != p_iterLevel->second.end())
leftValue = DoubleOrArray()(p_nodalValues, iterLeft->second);
Eigen::ArrayXui rightBound(p_positionCurrent);
rightBound(p_idim) = 2;
SparseLevel::const_iterator iterRight = p_iterLevel->second.find(rightBound);
if (iterRight != p_iterLevel->second.end())
rightValue = DoubleOrArray()(p_nodalValues, iterRight->second);
// First Level Hierarchization
HierarchizationFirstLevel<T, TT>(p_levelCurrent, p_positionCurrent, p_iterLevel, p_idim, leftValue, rightValue, p_dataSet, p_nodalValues, p_hierarValues);
}
};
/// \class Dehierar1DLinBound SparseGridLinBound.h
/// Dehierarchization
class Dehierar1DLinBound : public HierarDehierarBound
{
protected :
/// \brief Dehierarchization 1D in given dimension
/// \param p_levelCurrent Current level of the point
/// \param p_positionCurrent Current position of the point in the current level
/// \param p_iterLevel Iterator on current level
/// \param p_idim Current dimension
/// \param p_leftParentHierarValue Left parent nodal value
/// \param p_rightParentHierarValue Left parent nodal value
/// \param p_dataSet Data structure with all the points
/// \param p_hierarValues Hierarchical values
/// \param p_nodalValues Nodal values
template< class T, class TT>
void recursive1DDehierarchization(Eigen::ArrayXc &p_levelCurrent,
Eigen::ArrayXui &p_positionCurrent,
const SparseSet::const_iterator &p_iterLevel,
const unsigned int &p_idim,
const T &p_leftParentHierarValue,
const T &p_rightParentHierarValue,
const SparseSet &p_dataSet,
const TT &p_hierarValues,
TT &p_nodalValues)
{
if (p_iterLevel == p_dataSet.end())
return ;
// position
SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
if (iterPosition == p_iterLevel->second.end())
return ;
// position
int iposPoint = iterPosition->second;
T valueMidle = DoubleOrArray()(p_hierarValues, iposPoint);
// do dehierarchization
valueMidle += 0.5 * (p_leftParentHierarValue + p_rightParentHierarValue);
DoubleOrArray().affect(p_nodalValues, iposPoint, valueMidle);
char oldLevel = p_levelCurrent(p_idim);
unsigned int oldPosition = p_positionCurrent(p_idim);
// child level
p_levelCurrent(p_idim) += 1;
SparseSet::const_iterator iterLevelChild = p_dataSet.find(p_levelCurrent);
// left
p_positionCurrent(p_idim) = 2 * oldPosition;
recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_leftParentHierarValue, valueMidle, p_dataSet, p_hierarValues, p_nodalValues);
// right
p_positionCurrent(p_idim) += 1;
recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, valueMidle, p_rightParentHierarValue, p_dataSet, p_hierarValues, p_nodalValues);
p_positionCurrent(p_idim) = oldPosition;
p_levelCurrent(p_idim) = oldLevel;
}
/// \brief Dehierarchization 1D in given dimension
/// \param p_levelCurrent Current index of the point
/// \param p_positionCurrent Current level of the point
/// \param p_iterLevel Iteration on level
/// \param p_idim Current dimension
/// \param p_leftParentHierarValue Left parent nodal value
/// \param p_rightParentHierarValue Right parent nodal value
/// \param p_dataSet Data structure with all the points
/// \param p_hierarValues Hierarchical values
/// \param p_nodalValues Nodal values
template< class T, class TT>
void dehierarchizationFirstLevel(Eigen::ArrayXc &p_levelCurrent,
Eigen::ArrayXui &p_positionCurrent,
const SparseSet::const_iterator &p_iterLevel,
const unsigned int &p_idim,
const T &p_leftParentHierarValue,
const T &p_rightParentHierarValue,
const SparseSet &p_dataSet,
const TT &p_hierarValues,
TT &p_nodalValues)
{
if (p_iterLevel == p_dataSet.end())
return ;
// position
SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
if (iterPosition == p_iterLevel->second.end())
return ;
// position
int iposPoint = iterPosition->second;
T valueMidle = DoubleOrArray()(p_hierarValues, iposPoint);
// do dehierarchization
valueMidle += 0.5 * (p_leftParentHierarValue + p_rightParentHierarValue);
DoubleOrArray().affect(p_nodalValues, iposPoint, valueMidle);
char oldLevel = p_levelCurrent(p_idim);
unsigned int oldPosition = p_positionCurrent(p_idim);
// child level
p_levelCurrent(p_idim) += 1;
SparseSet::const_iterator iterLevelChild = p_dataSet.find(p_levelCurrent);
// left
p_positionCurrent(p_idim) = 0;
recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_leftParentHierarValue, valueMidle, p_dataSet, p_hierarValues, p_nodalValues);
// right
p_positionCurrent(p_idim) = 1;
recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, valueMidle, p_rightParentHierarValue, p_dataSet, p_hierarValues, p_nodalValues);
p_positionCurrent(p_idim) = oldPosition;
p_levelCurrent(p_idim) = oldLevel;
}
public :
Dehierar1DLinBound() {}
/// \brief Dehierarchization 1D in given dimension
/// \param p_levelCurrent Current level of the point
/// \param p_positionCurrent Current position of the point
/// \param p_iterLevel Iterator on current level
/// \param p_idim Current dimension
/// \param p_dataSet Data structure with all the points
/// \param p_hierarValues Hierarchical values
/// \param p_nodalValues Nodal values
template< class T, class TT>
void operator()(Eigen::ArrayXc &p_levelCurrent,
Eigen::ArrayXui &p_positionCurrent,
const SparseSet::const_iterator &p_iterLevel,
const unsigned int &p_idim,
const SparseSet &p_dataSet,
const TT &p_hierarValues,
TT &p_nodalValues)
{
T leftValue ;
T rightValue ;
Eigen::ArrayXui leftBound(p_positionCurrent) ;
leftBound(p_idim) = 0;
SparseLevel::const_iterator iterLeft = p_iterLevel->second.find(leftBound);
if (iterLeft != p_iterLevel->second.end())
leftValue = DoubleOrArray()(p_hierarValues, iterLeft->second);
Eigen::ArrayXui rightBound(p_positionCurrent);
rightBound(p_idim) = 2;
SparseLevel::const_iterator iterRight = p_iterLevel->second.find(rightBound);
if (iterRight != p_iterLevel->second.end())
rightValue = DoubleOrArray()(p_hierarValues, iterRight->second);
// first level dehierarchization
dehierarchizationFirstLevel<T, TT>(p_levelCurrent, p_positionCurrent, p_iterLevel, p_idim, leftValue, rightValue, p_dataSet, p_hierarValues, p_nodalValues);
}
};
///@}
}
#endif
|