File: SparseGridLinNoBound.h

package info (click to toggle)
stopt 5.12%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,860 kB
  • sloc: cpp: 70,456; python: 5,950; makefile: 72; sh: 57
file content (238 lines) | stat: -rw-r--r-- 10,524 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifndef SPARSEGRIDLINNOBOUND_H
#define SPARSEGRIDLINNOBOUND_H
#include <Eigen/Dense>
#include "StOpt/core/sparse/sparseGridTypes.h"
#include "StOpt/core/sparse/SparseGridHierarDehierarNoBound.h"


/** \file SparseGridLinNoBound.h
 * \brief Regroup linearSparseNoBound hierarchization and dehierarchization for linear sparse grids
 * \author Xavier Warin
 */
namespace StOpt
{
/// \defgroup linearSparseNoBound Linear Hierarchization and Deheriarchization without  boundary points
/// Regroup function used in hierarchization ond dehierarchizatoin for sparse grids without any points on the boundary and a linear approximation per mesh
///@{



/// \class  Hierar1DLinNoBound   SparseGridLinNoBound.h
/// Hierarchization
class Hierar1DLinNoBound : public HierarDehierarNoBound
{

protected :

    /// \brief Hierarchization in given dimension in 1D
    /// \param p_levelCurrent            current index of the point
    /// \param p_positionCurrent         current level of the point
    /// \param p_iterLevel               iterator on level
    /// \param p_idim                    current dimension
    /// \param p_leftParentNodalValue    Left parent nodal value
    /// \param p_rightParentNodalValue   Right parent nodal value
    /// \param p_dataSet                 Data structure with all the points
    /// \param p_nodalValues               Nodalvalues
    /// \param p_hierarValues              Hierarchical values
    template< class T, class TT>
    void recursive1DHierarchization(Eigen::ArrayXc &p_levelCurrent,
                                    Eigen::ArrayXui &p_positionCurrent,
                                    const  SparseSet::const_iterator &p_iterLevel,
                                    const unsigned int &p_idim,
                                    const T &p_leftParentNodalValue,
                                    const T &p_rightParentNodalValue,
                                    const SparseSet &p_dataSet,
                                    const TT   &p_nodalValues,
                                    TT &p_hierarValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        // position
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        int iposPoint = iterPosition->second;
        T valueMidle =  DoubleOrArray()(p_nodalValues, iposPoint);
        // hierarchization
        DoubleOrArray().affect(p_hierarValues, iposPoint, valueMidle  - 0.5 * (p_leftParentNodalValue + p_rightParentNodalValue));

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // modified left and right values
        T leftParentNodalValueLoc = p_leftParentNodalValue;
        T rightParentNodalValueLoc = p_rightParentNodalValue;
        if (oldLevel == 1)
        {
            leftParentNodalValueLoc = valueMidle;
            rightParentNodalValueLoc = valueMidle;
        }
        else if (oldPosition == 0)
        {
            // linear extrapolation
            leftParentNodalValueLoc = 2 * valueMidle - p_rightParentNodalValue;
        }
        else if (oldPosition == lastNode[oldLevel - 1])
        {
            // linear extrapolation
            rightParentNodalValueLoc = 2 * valueMidle - p_leftParentNodalValue;
        }
        // left
        p_positionCurrent(p_idim) = 2 * oldPosition;
        recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, leftParentNodalValueLoc, valueMidle, p_dataSet, p_nodalValues, p_hierarValues);
        // right
        p_positionCurrent(p_idim) += 1;
        recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, valueMidle, rightParentNodalValueLoc, p_dataSet, p_nodalValues, p_hierarValues);

        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }

public :

    // default
    Hierar1DLinNoBound() {}

    // operator for 1D Hierarchization
    /// \brief Hierarchization in given dimension in 1D
    /// \param p_levelCurrent            Current level of the point
    /// \param p_positionCurrent         Current position  of the point in the current level
    /// \param p_iterLevel               Iterator on current level
    /// \param p_idim                    Current dimension
    /// \param p_dataSet                 Data structure with all the points
    /// \param p_nodalValues             Nodalvalues
    /// \param p_hierarValues            Hierarchical values
    template< class T, class TT>
    void operator()(Eigen::ArrayXc &p_levelCurrent,
                    Eigen::ArrayXui &p_positionCurrent,
                    const  SparseSet::const_iterator &p_iterLevel,
                    const unsigned int     &p_idim,
                    const SparseSet       &p_dataSet,
                    const TT &p_nodalValues,
                    TT        &p_hierarValues)
    {
        // left and right value
        T leftValue ;
        DoubleOrArray().zero(leftValue, p_nodalValues);
        T rightValue ;
        DoubleOrArray().zero(rightValue, p_nodalValues);
        recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent, p_iterLevel, p_idim, leftValue, rightValue, p_dataSet, p_nodalValues, p_hierarValues);

    }

};


/// \class Dehierar1DLinNoBound   SparseGridLinNoBound.h
/// Dehierarchization
class Dehierar1DLinNoBound : public HierarDehierarNoBound
{
protected :
    /// \brief Dehierarchization 1D in given dimension
    /// \param p_levelCurrent            Current level of the point
    /// \param p_positionCurrent         Current position of the point in the current level
    /// \param p_iterLevel               Iterator on current level
    /// \param p_idim                    Current dimension
    /// \param p_leftParentHierarValue   Left parent nodal value
    /// \param rightParentHierarValue    Left parent nodal value
    /// \param p_dataSet                 Data structure with all the points
    /// \param p_hierarValues            Hierarchical values
    /// \param p_nodalValues             Nodalvalues
    template< class T, class TT>
    void recursive1DDehierarchization(Eigen::ArrayXc &p_levelCurrent,
                                      Eigen::ArrayXui &p_positionCurrent,
                                      const  SparseSet::const_iterator &p_iterLevel,
                                      const unsigned int &p_idim,
                                      const T &p_leftParentHierarValue,
                                      const T &rightParentHierarValue,
                                      const SparseSet &p_dataSet,
                                      const TT &p_hierarValues,
                                      TT &p_nodalValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        // position
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        int iposPoint = iterPosition->second;
        T valueMidle = DoubleOrArray()(p_nodalValues, iposPoint);
        // do dehierarchization
        valueMidle += 0.5 * (p_leftParentHierarValue + rightParentHierarValue);
        DoubleOrArray().affect(p_nodalValues, iposPoint, valueMidle);

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // modified left and right values
        T leftParentHierarValueLoc = p_leftParentHierarValue;
        T rightParentHierarValueLoc = rightParentHierarValue;
        if (oldLevel == 1)
        {
            leftParentHierarValueLoc = valueMidle;
            rightParentHierarValueLoc = valueMidle;
        }
        else  if (oldPosition == 0)
        {
            // linear extrapolation
            leftParentHierarValueLoc = 2 * valueMidle - rightParentHierarValue;
        }
        else if (oldPosition == lastNode[oldLevel - 1])
        {
            // linear extrapolation
            rightParentHierarValueLoc = 2 * valueMidle - p_leftParentHierarValue;
        }
        // left
        p_positionCurrent(p_idim) = 2 * oldPosition;
        recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, leftParentHierarValueLoc, valueMidle, p_dataSet, p_hierarValues, p_nodalValues);
        // right
        p_positionCurrent(p_idim) += 1;
        recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, valueMidle, rightParentHierarValueLoc, p_dataSet, p_hierarValues, p_nodalValues);

        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }

public :

    Dehierar1DLinNoBound() {}

    /// \brief Dehierarchization 1D in given dimension
    /// \param p_levelCurrent             Current level of the point
    /// \param p_positionCurrent          Current position of the point
    /// \param p_iterLevel                Iterator on current level
    /// \param p_idim                     Current dimension
    /// \param p_dataSet                  Data structure with all the points
    /// \param p_hierarValues             Hierarchical values
    /// \param p_nodalValues              Nodalvalues
    template< class T, class TT>
    void operator()(Eigen::ArrayXc &p_levelCurrent,
                    Eigen::ArrayXui &p_positionCurrent,
                    const SparseSet::const_iterator &p_iterLevel,
                    const unsigned int &p_idim,
                    const SparseSet &p_dataSet,
                    const TT &p_hierarValues,
                    TT &p_nodalValues)
    {
        T leftValue ;
        DoubleOrArray().zero(leftValue, p_nodalValues);
        T rightValue ;
        DoubleOrArray().zero(rightValue, p_nodalValues);
        recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent, p_iterLevel, p_idim, leftValue, rightValue, p_dataSet, p_hierarValues, p_nodalValues);
    }

};

///@}

}
#endif