File: sparseGridBound.h

package info (click to toggle)
stopt 5.12%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,860 kB
  • sloc: cpp: 70,456; python: 5,950; makefile: 72; sh: 57
file content (301 lines) | stat: -rw-r--r-- 15,823 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifndef SPARSEGRIDBOUND_H
#define SPARSEGRIDBOUND_H
#include <Eigen/Dense>
#include <iostream>
#include "StOpt/core/utils/comparisonUtils.h"
#include "StOpt/core/sparse/sparseGridTypes.h"
#include "StOpt/core/sparse/sparseGridUtils.h"
#include "StOpt/core/sparse/sparseGridCommon.h"

/** \file sparseGridBound.h
 *  \brief Regroup some functions used in sparse grid when no boundary points are present
 *  \author Xavier Warin
 */

namespace StOpt
{
/// \defgroup sparse grid with bound
/// \brief Regroup function used in sparse grids without any points on the boundary
///@{

/// \brief Recursive construction for Data structure
/// \param p_levelCurrent           Current index of levels of the point
/// \param p_positionCurrent        Current position of the point ,at the given level
/// \param p_idim                   Current dimension
/// \param p_bInsideBound           True if  at previous step  the point was at a  boundary
/// \param p_dataSet                Data structure with all the points
/// \param p_ipoint                 Point number
void recursiveSparseConstructionBound(Eigen::ArrayXc &p_levelCurrent,
                                      Eigen::ArrayXui &p_positionCurrent,
                                      const unsigned short  int &p_idim,
                                      const bool &p_bInsideBound,
                                      SparseSet &p_dataSet,
                                      size_t &p_ipoint);

/// \brief Initial  construction for Data structure
///        The level  \f$ (l_i)_{i=1,NDIM} \f$ kept satisfies
///       \f$ \sum_{i=1}^{NDIM} l_i \alpha_i \le \f$  levelMax \f$ + NDIM -1 \f$
/// \param p_levelMax          Max level for the sparse grid
/// \param p_alpha             weight used for anisotropic sparse grids
/// \param p_dataSet           Data structure with all the points
/// \param p_ipoint            Point number
void initialSparseConstructionBound(const unsigned int &p_levelMax,
                                    const Eigen::ArrayXd &p_alpha,
                                    SparseSet   &p_dataSet,
                                    size_t     &p_ipoint);



/// \brief Initial  construction for Data structure
///        The level  \f$ (l_i)_{i=1,NDIM} \f$ kept satisfies
///       \f$  l_i \alpha_i \le \f$  levelMax
/// \param p_levelMax          Max level for the full  grid
/// \param p_alpha             weight used for anisotropic full grids
/// \param p_dataSet           Data structure with all the points
/// \param p_ipoint            Point number
void initialFullConstructionBound(const unsigned int &p_levelMax,
                                  const Eigen::ArrayXd &p_alpha,
                                  SparseSet   &p_dataSet,
                                  size_t     &p_ipoint);



/// \brief Explore dimension for hierarchization dehierarchization  iterating from root in a given direction (1D call)  with  boundary points
/// \param p_levelCurrent                 Current level of the point
/// \param p_positionCurrent              Current position  of the point
/// \param p_iterLevel                    Iterator on current level
/// \param p_idim                         Current dimension where Hierarchization is achieved
/// \param p_vecOtherDim                  Vector of dimensions different from p_idim
/// \param p_idimRemain                   Number of dim to explore
/// \param p_dataSet                      Data structure with all the points
/// \param p_source                       function value to transform (either Hierarchized or Dehierarchized)
/// \param p_output                       result
template< class HierDehier, class T, class TT >
void recursiveExploration1DBound(Eigen::ArrayXc &p_levelCurrent,
                                 Eigen::ArrayXui &p_positionCurrent,
                                 const typename SparseSet::const_iterator &p_iterLevel,
                                 const unsigned int &p_idim,
                                 const SparseSet &p_dataSet,
                                 const Eigen::ArrayXui &p_vecOtherDim,
                                 const unsigned int   &p_idimRemain,
                                 const TT &p_source,
                                 TT &p_output)
{

    if (p_iterLevel == p_dataSet.end())
        return ;
    // achieve 1D Heriarchization for the current node and given direction
    HierDehier().template operator()<T, TT>(p_levelCurrent, p_positionCurrent, p_iterLevel,  p_idim, p_dataSet, p_source, p_output);

    // recursive
    for (size_t idd = 0 ; idd < p_idimRemain; ++idd)
    {
        // dimension to dive into
        int idimDive = p_vecOtherDim(idd);
        // test if root in working direction
        if (p_levelCurrent(idimDive) == 1)
        {
            if (p_positionCurrent(idimDive) == 1)
            {
                unsigned int oldPosition = p_positionCurrent(idimDive);
                {
                    // get left
                    p_positionCurrent(idimDive) = 0;
                    // recursive
                    recursiveExploration1DBound<HierDehier, T, TT> (p_levelCurrent, p_positionCurrent, p_iterLevel, p_idim, p_dataSet, p_vecOtherDim, idd, p_source, p_output) ;
                    // right boundary
                    p_positionCurrent(idimDive) = 2 ;
                    recursiveExploration1DBound<HierDehier, T, TT > (p_levelCurrent, p_positionCurrent, p_iterLevel, p_idim, p_dataSet, p_vecOtherDim, idd, p_source, p_output) ;

                }
                // child level
                char oldLevel = p_levelCurrent(idimDive);
                p_levelCurrent(idimDive) = oldLevel + 1 ;
                const typename SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);
                // left
                p_positionCurrent(idimDive) = 0;
                // recursive hierarchization from this point
                recursiveExploration1DBound<HierDehier, T, TT >(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_dataSet, p_vecOtherDim, idd + 1, p_source, p_output);
                // right
                p_positionCurrent(idimDive) = 1 ;
                // recursive hierarchization from this point
                recursiveExploration1DBound<HierDehier, T, TT >(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_dataSet, p_vecOtherDim, idd + 1, p_source, p_output);

                p_levelCurrent(idimDive) = oldLevel;
                p_positionCurrent(idimDive) = oldPosition;
            }

        }
        else
        {
            unsigned int oldPosition = p_positionCurrent(idimDive);
            char oldLevel = p_levelCurrent(idimDive);
            // child level
            p_levelCurrent(idimDive) = oldLevel + 1 ;
            const typename SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);
            // left
            p_positionCurrent(idimDive) = 2 * oldPosition;
            // recursive hierarchization from this point
            recursiveExploration1DBound< HierDehier, T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_dataSet, p_vecOtherDim, idd + 1, p_source, p_output);
            // right
            p_positionCurrent(idimDive) = 2 * oldPosition + 1;
            // recursive hierarchization from this point
            recursiveExploration1DBound<HierDehier, T, TT >(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_dataSet, p_vecOtherDim, idd + 1, p_source, p_output);

            p_levelCurrent(idimDive) = oldLevel;
            p_positionCurrent(idimDive) = oldPosition;
        }
    }
}

/// \brief global hierarchization or dehierarchization when no boundary points
/// \param p_dataSet      Data structure with all the points
/// \param p_idim         dimension of the problem
/// \param p_output       values changed from nodal to hierarchical or vice versa
template<  class HierDehier, class T, class TT >
void ExplorationBound(const  SparseSet &p_dataSet, const int &p_idim, TT &p_output)
{

    // get root
    Eigen::ArrayXc  rootLevel(p_idim) ;
    Eigen::ArrayXui rootPosition(p_idim);
    HierDehier().get_root(rootLevel, rootPosition);
    typename SparseSet::const_iterator iterRoot = p_dataSet.find(rootLevel);

    Eigen::ArrayXui  vecOtherDim(p_idim);
    for (unsigned int  id = 0 ; id < static_cast<unsigned int>(p_idim); ++id)
    {
        int ipos  = 0 ;
        for (unsigned short  idd = 0 ; idd <  static_cast<unsigned short>(p_idim) ; ++idd)
            if (idd != id)
                vecOtherDim(ipos++) = idd ;
        // center
        recursiveExploration1DBound<HierDehier, T, TT > (rootLevel, rootPosition, iterRoot, id, p_dataSet, vecOtherDim, p_idim - 1, p_output, p_output) ;
    }
}


/// \brief Evaluation of a  function by interpolation (generic for Linear, Quadratic and Cubic) (with boundary)
/// We suppose here that the son have been calculated for each node (to accelerate resolution)
/// Templates are here to define interpolation functions
/// \param p_iPoint                 Point number
/// \param p_xMiddle                Position in [0,1] of current node in each dimension
/// \param p_dx                     Semi mesh size
/// \param p_x                      evaluation point
/// \param p_idimMin                minimal dimension search (to avoid to go twice at same node)
/// \param p_funcVal                Function basis values at current node for all dimensions
/// \param p_son                    Son array (first dimension is the node number, second is the dimension , 0 in array corresponds to left, 1 to right)
/// \param p_neighbourBound         Neighbour on boundary (first dimension is the node number, second is the dimension , 0 in array corresponds to left, 1 to right)
/// \param p_hierarValues             Array of Hierarchical values
template< class basisFunctionLeft, class basisFunctionRight, class T, class TT >
T recursiveEvaluationWithSonBound(const int &p_iPoint,
                                  Eigen::ArrayXd &p_xMiddle,
                                  Eigen::ArrayXd &p_dx,
                                  const Eigen::ArrayXd &p_x,
                                  const unsigned short int &p_idimMin,
                                  Eigen::ArrayXd &p_funcVal,
                                  const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic >    &p_son,
                                  const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic >     &p_neighbourBound,
                                  const TT   &p_hierarValues)
{
    T res  = DoubleOrArray()(p_hierarValues, p_iPoint) * p_funcVal.prod();
    // iterate on dimension
    for (int idim = 0 ; idim < p_idimMin ;  ++idim)
    {
        // test if center point
        if (almostEqual<double>(p_xMiddle(idim), 0.5, 10))
        {
            // Left point
            // calculate function value
            double olfFuncVal = p_funcVal(idim);
            p_funcVal(idim) = LinearHatValue(0, 1.)(p_x(idim));
            // contribution with directions below
            res += recursiveEvaluationWithSonBound<basisFunctionLeft, basisFunctionRight, T, TT>(p_neighbourBound(p_iPoint, idim)[0], p_xMiddle, p_dx, p_x, idim, p_funcVal, p_son,
                    p_neighbourBound, p_hierarValues);
            // calculate function value
            p_funcVal(idim) = LinearHatValue(1., 1.)(p_x(idim));
            // contribution with directions below
            res += recursiveEvaluationWithSonBound<basisFunctionLeft, basisFunctionRight, T, TT>(p_neighbourBound(p_iPoint, idim)[1], p_xMiddle, p_dx, p_x, idim, p_funcVal, p_son,
                    p_neighbourBound, p_hierarValues);
            p_funcVal(idim) = olfFuncVal;
        }
        // add contribution to current point
        // utilitarian
        double olfFuncVal = p_funcVal(idim);
        double oldXMiddle = p_xMiddle(idim);
        double oldDx = p_dx(idim);
        double dxModified = 0.5 * p_dx(idim) ;
        p_dx(idim) = dxModified;
        // semi size mesh
        if (p_x(idim) <= p_xMiddle(idim))
        {
            if (p_son(p_iPoint, idim)[0] >= 0)
            {
                // go left
                p_xMiddle(idim) -= dxModified;
                p_funcVal(idim) = basisFunctionLeft(p_xMiddle(idim), 1. / dxModified)(p_x(idim));
                // add contribution
                res += recursiveEvaluationWithSonBound<basisFunctionLeft, basisFunctionRight, T, TT>(p_son(p_iPoint, idim)[0], p_xMiddle, p_dx, p_x, idim + 1, p_funcVal, p_son,
                        p_neighbourBound, p_hierarValues);
            }
        }
        else
        {
            if (p_son(p_iPoint, idim)[1] >= 0)
            {
                // go right
                p_xMiddle(idim) += dxModified;
                p_funcVal(idim) = basisFunctionRight(p_xMiddle(idim), 1. / dxModified)(p_x(idim));
                // add contribution
                res += recursiveEvaluationWithSonBound<basisFunctionLeft, basisFunctionRight, T, TT>(p_son(p_iPoint, idim)[1], p_xMiddle, p_dx, p_x, idim + 1, p_funcVal, p_son,
                        p_neighbourBound, p_hierarValues);
            }
        }
        p_funcVal(idim) = olfFuncVal;
        p_xMiddle(idim) = oldXMiddle;
        p_dx(idim) = oldDx;
    }
    return res ;
}


///  \brief Generic evaluation with bounds
///  \param p_x                        evaluation point coordinates
///  \param p_iBase                    Number of the base point of the structure
///  \param p_son                      Son array (first dimension is the node number, second is the dimension , 0 in array corresponds to left, 1 to right)
///  \param p_neighbourBound           Neighbour on boundary (first dimension is the node number, second is the dimension , 0 in array corresponds to left, 1 to right)
///  \param p_hierarValues             Array of Hierarchical values
template<  class basisFunctionCenter, class basisFunctionLeft,  class basisFunctionRight, class T, class TT>
T globalEvaluationWithSonBound(const Eigen::ArrayXd   &p_x,
                               const int &p_iBase,
                               const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic >    &p_son,
                               const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic >     &p_neighbourBound,
                               const TT &p_hierarValues)
{
    // size mesh
    Eigen::ArrayXd dx = Eigen::ArrayXd::Constant(p_x.size(), 0.5);
    Eigen::ArrayXd  xMiddle = Eigen::ArrayXd::Constant(p_x.size(), 0.5);
    Eigen::ArrayXd  funcVal(p_x.size());
    for (int idim = 0 ; idim < p_x.size(); ++idim)
        funcVal(idim) = basisFunctionCenter(0.5, 2.)(p_x(idim));
    return  recursiveEvaluationWithSonBound<basisFunctionLeft, basisFunctionRight, T, TT >(p_iBase, xMiddle, dx, p_x, p_x.size(), funcVal, p_son, p_neighbourBound, p_hierarValues) ;
}

///  \brief Calculate the son of the point in all dimension, and neighbours if needed
///  \param p_dataSet         Data structure
///  \param p_idim            Dimension of the problem
///  \param p_nbPoint         Number of points in data structure
///  \param p_son             Son array (nb points,NDIM,Left/Right)
///  \param p_neighbourBound          Neighbour for  boundary points
int sonEvaluationBound(const SparseSet   &p_dataSet, const int &p_idim,
                       const int   &p_nbPoint,
                       Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_son,
                       Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_neighbourBound);
///@}


}
#endif /* SPARSEGRIDBOUND.H */