1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifndef SPARSEGRIDBOUND_H
#define SPARSEGRIDBOUND_H
#include <Eigen/Dense>
#include <iostream>
#include "StOpt/core/utils/comparisonUtils.h"
#include "StOpt/core/sparse/sparseGridTypes.h"
#include "StOpt/core/sparse/sparseGridUtils.h"
#include "StOpt/core/sparse/sparseGridCommon.h"
/** \file sparseGridBound.h
* \brief Regroup some functions used in sparse grid when no boundary points are present
* \author Xavier Warin
*/
namespace StOpt
{
/// \defgroup sparse grid with bound
/// \brief Regroup function used in sparse grids without any points on the boundary
///@{
/// \brief Recursive construction for Data structure
/// \param p_levelCurrent Current index of levels of the point
/// \param p_positionCurrent Current position of the point ,at the given level
/// \param p_idim Current dimension
/// \param p_bInsideBound True if at previous step the point was at a boundary
/// \param p_dataSet Data structure with all the points
/// \param p_ipoint Point number
void recursiveSparseConstructionBound(Eigen::ArrayXc &p_levelCurrent,
Eigen::ArrayXui &p_positionCurrent,
const unsigned short int &p_idim,
const bool &p_bInsideBound,
SparseSet &p_dataSet,
size_t &p_ipoint);
/// \brief Initial construction for Data structure
/// The level \f$ (l_i)_{i=1,NDIM} \f$ kept satisfies
/// \f$ \sum_{i=1}^{NDIM} l_i \alpha_i \le \f$ levelMax \f$ + NDIM -1 \f$
/// \param p_levelMax Max level for the sparse grid
/// \param p_alpha weight used for anisotropic sparse grids
/// \param p_dataSet Data structure with all the points
/// \param p_ipoint Point number
void initialSparseConstructionBound(const unsigned int &p_levelMax,
const Eigen::ArrayXd &p_alpha,
SparseSet &p_dataSet,
size_t &p_ipoint);
/// \brief Initial construction for Data structure
/// The level \f$ (l_i)_{i=1,NDIM} \f$ kept satisfies
/// \f$ l_i \alpha_i \le \f$ levelMax
/// \param p_levelMax Max level for the full grid
/// \param p_alpha weight used for anisotropic full grids
/// \param p_dataSet Data structure with all the points
/// \param p_ipoint Point number
void initialFullConstructionBound(const unsigned int &p_levelMax,
const Eigen::ArrayXd &p_alpha,
SparseSet &p_dataSet,
size_t &p_ipoint);
/// \brief Explore dimension for hierarchization dehierarchization iterating from root in a given direction (1D call) with boundary points
/// \param p_levelCurrent Current level of the point
/// \param p_positionCurrent Current position of the point
/// \param p_iterLevel Iterator on current level
/// \param p_idim Current dimension where Hierarchization is achieved
/// \param p_vecOtherDim Vector of dimensions different from p_idim
/// \param p_idimRemain Number of dim to explore
/// \param p_dataSet Data structure with all the points
/// \param p_source function value to transform (either Hierarchized or Dehierarchized)
/// \param p_output result
template< class HierDehier, class T, class TT >
void recursiveExploration1DBound(Eigen::ArrayXc &p_levelCurrent,
Eigen::ArrayXui &p_positionCurrent,
const typename SparseSet::const_iterator &p_iterLevel,
const unsigned int &p_idim,
const SparseSet &p_dataSet,
const Eigen::ArrayXui &p_vecOtherDim,
const unsigned int &p_idimRemain,
const TT &p_source,
TT &p_output)
{
if (p_iterLevel == p_dataSet.end())
return ;
// achieve 1D Heriarchization for the current node and given direction
HierDehier().template operator()<T, TT>(p_levelCurrent, p_positionCurrent, p_iterLevel, p_idim, p_dataSet, p_source, p_output);
// recursive
for (size_t idd = 0 ; idd < p_idimRemain; ++idd)
{
// dimension to dive into
int idimDive = p_vecOtherDim(idd);
// test if root in working direction
if (p_levelCurrent(idimDive) == 1)
{
if (p_positionCurrent(idimDive) == 1)
{
unsigned int oldPosition = p_positionCurrent(idimDive);
{
// get left
p_positionCurrent(idimDive) = 0;
// recursive
recursiveExploration1DBound<HierDehier, T, TT> (p_levelCurrent, p_positionCurrent, p_iterLevel, p_idim, p_dataSet, p_vecOtherDim, idd, p_source, p_output) ;
// right boundary
p_positionCurrent(idimDive) = 2 ;
recursiveExploration1DBound<HierDehier, T, TT > (p_levelCurrent, p_positionCurrent, p_iterLevel, p_idim, p_dataSet, p_vecOtherDim, idd, p_source, p_output) ;
}
// child level
char oldLevel = p_levelCurrent(idimDive);
p_levelCurrent(idimDive) = oldLevel + 1 ;
const typename SparseSet::const_iterator iterLevelChild = p_dataSet.find(p_levelCurrent);
// left
p_positionCurrent(idimDive) = 0;
// recursive hierarchization from this point
recursiveExploration1DBound<HierDehier, T, TT >(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_dataSet, p_vecOtherDim, idd + 1, p_source, p_output);
// right
p_positionCurrent(idimDive) = 1 ;
// recursive hierarchization from this point
recursiveExploration1DBound<HierDehier, T, TT >(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_dataSet, p_vecOtherDim, idd + 1, p_source, p_output);
p_levelCurrent(idimDive) = oldLevel;
p_positionCurrent(idimDive) = oldPosition;
}
}
else
{
unsigned int oldPosition = p_positionCurrent(idimDive);
char oldLevel = p_levelCurrent(idimDive);
// child level
p_levelCurrent(idimDive) = oldLevel + 1 ;
const typename SparseSet::const_iterator iterLevelChild = p_dataSet.find(p_levelCurrent);
// left
p_positionCurrent(idimDive) = 2 * oldPosition;
// recursive hierarchization from this point
recursiveExploration1DBound< HierDehier, T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_dataSet, p_vecOtherDim, idd + 1, p_source, p_output);
// right
p_positionCurrent(idimDive) = 2 * oldPosition + 1;
// recursive hierarchization from this point
recursiveExploration1DBound<HierDehier, T, TT >(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_dataSet, p_vecOtherDim, idd + 1, p_source, p_output);
p_levelCurrent(idimDive) = oldLevel;
p_positionCurrent(idimDive) = oldPosition;
}
}
}
/// \brief global hierarchization or dehierarchization when no boundary points
/// \param p_dataSet Data structure with all the points
/// \param p_idim dimension of the problem
/// \param p_output values changed from nodal to hierarchical or vice versa
template< class HierDehier, class T, class TT >
void ExplorationBound(const SparseSet &p_dataSet, const int &p_idim, TT &p_output)
{
// get root
Eigen::ArrayXc rootLevel(p_idim) ;
Eigen::ArrayXui rootPosition(p_idim);
HierDehier().get_root(rootLevel, rootPosition);
typename SparseSet::const_iterator iterRoot = p_dataSet.find(rootLevel);
Eigen::ArrayXui vecOtherDim(p_idim);
for (unsigned int id = 0 ; id < static_cast<unsigned int>(p_idim); ++id)
{
int ipos = 0 ;
for (unsigned short idd = 0 ; idd < static_cast<unsigned short>(p_idim) ; ++idd)
if (idd != id)
vecOtherDim(ipos++) = idd ;
// center
recursiveExploration1DBound<HierDehier, T, TT > (rootLevel, rootPosition, iterRoot, id, p_dataSet, vecOtherDim, p_idim - 1, p_output, p_output) ;
}
}
/// \brief Evaluation of a function by interpolation (generic for Linear, Quadratic and Cubic) (with boundary)
/// We suppose here that the son have been calculated for each node (to accelerate resolution)
/// Templates are here to define interpolation functions
/// \param p_iPoint Point number
/// \param p_xMiddle Position in [0,1] of current node in each dimension
/// \param p_dx Semi mesh size
/// \param p_x evaluation point
/// \param p_idimMin minimal dimension search (to avoid to go twice at same node)
/// \param p_funcVal Function basis values at current node for all dimensions
/// \param p_son Son array (first dimension is the node number, second is the dimension , 0 in array corresponds to left, 1 to right)
/// \param p_neighbourBound Neighbour on boundary (first dimension is the node number, second is the dimension , 0 in array corresponds to left, 1 to right)
/// \param p_hierarValues Array of Hierarchical values
template< class basisFunctionLeft, class basisFunctionRight, class T, class TT >
T recursiveEvaluationWithSonBound(const int &p_iPoint,
Eigen::ArrayXd &p_xMiddle,
Eigen::ArrayXd &p_dx,
const Eigen::ArrayXd &p_x,
const unsigned short int &p_idimMin,
Eigen::ArrayXd &p_funcVal,
const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_son,
const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_neighbourBound,
const TT &p_hierarValues)
{
T res = DoubleOrArray()(p_hierarValues, p_iPoint) * p_funcVal.prod();
// iterate on dimension
for (int idim = 0 ; idim < p_idimMin ; ++idim)
{
// test if center point
if (almostEqual<double>(p_xMiddle(idim), 0.5, 10))
{
// Left point
// calculate function value
double olfFuncVal = p_funcVal(idim);
p_funcVal(idim) = LinearHatValue(0, 1.)(p_x(idim));
// contribution with directions below
res += recursiveEvaluationWithSonBound<basisFunctionLeft, basisFunctionRight, T, TT>(p_neighbourBound(p_iPoint, idim)[0], p_xMiddle, p_dx, p_x, idim, p_funcVal, p_son,
p_neighbourBound, p_hierarValues);
// calculate function value
p_funcVal(idim) = LinearHatValue(1., 1.)(p_x(idim));
// contribution with directions below
res += recursiveEvaluationWithSonBound<basisFunctionLeft, basisFunctionRight, T, TT>(p_neighbourBound(p_iPoint, idim)[1], p_xMiddle, p_dx, p_x, idim, p_funcVal, p_son,
p_neighbourBound, p_hierarValues);
p_funcVal(idim) = olfFuncVal;
}
// add contribution to current point
// utilitarian
double olfFuncVal = p_funcVal(idim);
double oldXMiddle = p_xMiddle(idim);
double oldDx = p_dx(idim);
double dxModified = 0.5 * p_dx(idim) ;
p_dx(idim) = dxModified;
// semi size mesh
if (p_x(idim) <= p_xMiddle(idim))
{
if (p_son(p_iPoint, idim)[0] >= 0)
{
// go left
p_xMiddle(idim) -= dxModified;
p_funcVal(idim) = basisFunctionLeft(p_xMiddle(idim), 1. / dxModified)(p_x(idim));
// add contribution
res += recursiveEvaluationWithSonBound<basisFunctionLeft, basisFunctionRight, T, TT>(p_son(p_iPoint, idim)[0], p_xMiddle, p_dx, p_x, idim + 1, p_funcVal, p_son,
p_neighbourBound, p_hierarValues);
}
}
else
{
if (p_son(p_iPoint, idim)[1] >= 0)
{
// go right
p_xMiddle(idim) += dxModified;
p_funcVal(idim) = basisFunctionRight(p_xMiddle(idim), 1. / dxModified)(p_x(idim));
// add contribution
res += recursiveEvaluationWithSonBound<basisFunctionLeft, basisFunctionRight, T, TT>(p_son(p_iPoint, idim)[1], p_xMiddle, p_dx, p_x, idim + 1, p_funcVal, p_son,
p_neighbourBound, p_hierarValues);
}
}
p_funcVal(idim) = olfFuncVal;
p_xMiddle(idim) = oldXMiddle;
p_dx(idim) = oldDx;
}
return res ;
}
/// \brief Generic evaluation with bounds
/// \param p_x evaluation point coordinates
/// \param p_iBase Number of the base point of the structure
/// \param p_son Son array (first dimension is the node number, second is the dimension , 0 in array corresponds to left, 1 to right)
/// \param p_neighbourBound Neighbour on boundary (first dimension is the node number, second is the dimension , 0 in array corresponds to left, 1 to right)
/// \param p_hierarValues Array of Hierarchical values
template< class basisFunctionCenter, class basisFunctionLeft, class basisFunctionRight, class T, class TT>
T globalEvaluationWithSonBound(const Eigen::ArrayXd &p_x,
const int &p_iBase,
const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_son,
const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_neighbourBound,
const TT &p_hierarValues)
{
// size mesh
Eigen::ArrayXd dx = Eigen::ArrayXd::Constant(p_x.size(), 0.5);
Eigen::ArrayXd xMiddle = Eigen::ArrayXd::Constant(p_x.size(), 0.5);
Eigen::ArrayXd funcVal(p_x.size());
for (int idim = 0 ; idim < p_x.size(); ++idim)
funcVal(idim) = basisFunctionCenter(0.5, 2.)(p_x(idim));
return recursiveEvaluationWithSonBound<basisFunctionLeft, basisFunctionRight, T, TT >(p_iBase, xMiddle, dx, p_x, p_x.size(), funcVal, p_son, p_neighbourBound, p_hierarValues) ;
}
/// \brief Calculate the son of the point in all dimension, and neighbours if needed
/// \param p_dataSet Data structure
/// \param p_idim Dimension of the problem
/// \param p_nbPoint Number of points in data structure
/// \param p_son Son array (nb points,NDIM,Left/Right)
/// \param p_neighbourBound Neighbour for boundary points
int sonEvaluationBound(const SparseSet &p_dataSet, const int &p_idim,
const int &p_nbPoint,
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_son,
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_neighbourBound);
///@}
}
#endif /* SPARSEGRIDBOUND.H */
|