1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <iostream>
#include <vector>
#include <functional>
#include <Eigen/Dense>
#include "StOpt/core/sparse/sparseGridTypes.h"
#include "StOpt/core/sparse/sparseGridUtils.h"
#include "StOpt/core/sparse/sparseGridCommon.h"
#include "StOpt/core/sparse/GetCoordinateNoBound.h"
namespace StOpt
{
void recursiveSparseConstructionNoBound(Eigen::ArrayXc &p_levelCurrent,
Eigen::ArrayXui &p_positionCurrent,
SparseSet::iterator &p_iterDataStructureCurrent,
const unsigned short int &p_idim,
SparseSet &p_dataSet,
size_t &p_ipoint)
{
if (p_iterDataStructureCurrent != p_dataSet.end())
{
if (p_idim == 0)
{
p_iterDataStructureCurrent->second[p_positionCurrent] = p_ipoint++ ;
sparse1DConstruction(p_levelCurrent, p_positionCurrent, p_dataSet, p_ipoint);
}
else
{
recursiveSparseConstructionNoBound(p_levelCurrent, p_positionCurrent, p_iterDataStructureCurrent, p_idim - 1, p_dataSet, p_ipoint);
char oldLevel = p_levelCurrent(p_idim);
unsigned int oldPosition = p_positionCurrent(p_idim);
// child level
p_levelCurrent(p_idim) += 1;
SparseSet::iterator iterDataStructureChild = p_dataSet.find(p_levelCurrent);
// LEFT
p_positionCurrent(p_idim) = 2 * oldPosition;
recursiveSparseConstructionNoBound(p_levelCurrent, p_positionCurrent, iterDataStructureChild, p_idim, p_dataSet, p_ipoint);
// RIGHT
p_positionCurrent(p_idim) = 2 * oldPosition + 1;
recursiveSparseConstructionNoBound(p_levelCurrent, p_positionCurrent, iterDataStructureChild, p_idim, p_dataSet, p_ipoint);
p_positionCurrent(p_idim) = oldPosition;
p_levelCurrent(p_idim) = oldLevel;
}
}
}
void initialSparseConstructionNoBound(const unsigned int &p_levelMax,
const Eigen::ArrayXd &p_alpha,
SparseSet &p_dataSet,
size_t &p_ipoint)
{
if (p_levelMax < 1)
{
std::cout << "Level should be above 0 " << std::endl;
abort();
}
// fist level
Eigen::ArrayXc firstLevel = Eigen::ArrayXc::Constant(p_alpha.size(), static_cast<char>(1));
double levelCalc = p_alpha.sum();
// create map
createLevelsSparse(firstLevel, 0, p_levelMax + p_alpha.size() - 1, p_alpha, p_dataSet, levelCalc);
// initialize point
Eigen::ArrayXui positionCurrent = Eigen::ArrayXui::Constant(p_alpha.size(), static_cast<unsigned int>(0));
// first iterator
SparseSet::iterator iterDataFirst = p_dataSet.find(firstLevel);
recursiveSparseConstructionNoBound(firstLevel, positionCurrent, iterDataFirst, p_alpha.size() - 1, p_dataSet, p_ipoint);
}
void initialFullConstructionNoBound(const unsigned int &p_levelMax,
const Eigen::ArrayXd &p_alpha,
SparseSet &p_dataSet,
size_t &p_ipoint)
{
if (p_levelMax < 1)
{
std::cout << "Level should be above 0 " << std::endl;
abort();
}
// fist level
Eigen::ArrayXc firstLevel = Eigen::ArrayXc::Constant(p_alpha.size(), static_cast<char>(1));
// create map
createLevelsFull(firstLevel, 0, p_levelMax, p_alpha, p_dataSet);
// initialize point
Eigen::ArrayXui positionCurrent = Eigen::ArrayXui::Constant(p_alpha.size(), static_cast<unsigned int>(0));
// first iterator
SparseSet::iterator iterDataFirst = p_dataSet.find(firstLevel);
recursiveSparseConstructionNoBound(firstLevel, positionCurrent, iterDataFirst, p_alpha.size() - 1, p_dataSet, p_ipoint);
}
void createBasisFunctionNoBound(const int &p_levelMax, const Eigen::ArrayXd &p_weight, const int &p_degree, std::vector< std::vector< std::function< double(const double &) > > > &p_functionScal)
{
int initLevelMax = 0;
for (int id = 0 ; id < p_weight.size(); ++id)
initLevelMax = std::max(initLevelMax, static_cast<int>(p_levelMax / p_weight(id)));
p_functionScal.resize(initLevelMax);
// first level
{
p_functionScal[0].resize(1);
p_functionScal[0][0] = OneFunction();
}
// level two
{
p_functionScal[1].resize(2);
p_functionScal[1][0] = LinearHatValue(0., 2, 2.);
p_functionScal[1][1] = LinearHatValue(1, 2., 2.);
}
// nest on level (
for (int ilevel = 2 ; ilevel < initLevelMax; ++ilevel)
{
p_functionScal[ilevel].resize(lastNode[ilevel] + 1);
{
// left element
p_functionScal[ilevel][0] = LinearHatValue(0., 2. / deltaSparseMesh[ilevel - 1], 2.);
}
{
// right element
p_functionScal[ilevel][lastNode[ilevel]] = LinearHatValue(1., 2. / deltaSparseMesh[ilevel - 1], 2.);
}
if (p_degree == 1)
{
for (size_t iindex = 1; iindex < lastNode[ilevel]; ++iindex)
{
double coordNod = GetCoordinateNoBound()(ilevel + 1, iindex);
p_functionScal[ilevel][iindex] = LinearHatValue(coordNod, 2. / deltaSparseMesh[ilevel]);
}
}
else if (p_degree == 2)
{
for (size_t iindex = 1; iindex < lastNode[ilevel]; ++iindex)
{
double coordNod = GetCoordinateNoBound()(ilevel + 1, iindex);
p_functionScal[ilevel][iindex] = QuadraticValue(coordNod, 2. / deltaSparseMesh[ilevel]);
}
}
else
{
// degree 3
{
{
double coordNod = GetCoordinateNoBound()(ilevel + 1, 1);
p_functionScal[ilevel][1] = QuadraticValue(coordNod, 2. / deltaSparseMesh[ilevel]);
}
for (size_t iindex = 2; iindex < lastNode[ilevel] - 1; ++iindex)
{
double coordNod = GetCoordinateNoBound()(ilevel + 1, iindex);
int iBaseType = iindex % 2;
// cubic.
if (iBaseType == 0)
{
p_functionScal[ilevel][iindex] = CubicLeftValue(coordNod, 2. / deltaSparseMesh[ilevel]);
}
else
{
p_functionScal[ilevel][iindex] = CubicRightValue(coordNod, 2. / deltaSparseMesh[ilevel]);
}
}
{
double coordNod = GetCoordinateNoBound()(ilevel + 1, lastNode[ilevel] - 1);
p_functionScal[ilevel][lastNode[ilevel] - 1] = QuadraticValue(coordNod, 2. / deltaSparseMesh[ilevel]);
}
}
}
}
}
int sonEvaluationNoBound(const SparseSet &p_dataSet, const int &p_idim,
const int &p_nbPoint,
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_son)
{
p_son.resize(p_nbPoint, p_idim);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
size_t ithread = omp_get_thread_num();
size_t nthreads = omp_get_num_threads();
size_t cnt = 0;
#endif
for (const auto &fatherLevel : p_dataSet)
{
#ifdef _OPENMP
cnt = +1;
if ((cnt - 1) % nthreads != ithread) continue;
#endif
Eigen::ArrayXc level = fatherLevel.first;
Eigen::ArrayXui position(p_idim);
for (int id = 0; id < p_idim; ++id)
{
level(id) += 1;
SparseSet::const_iterator iterSon = p_dataSet.find(level);
if (iterSon != p_dataSet.end())
{
for (const auto &iPosition : fatherLevel.second)
{
position = iPosition.first;
int iposPoint = iPosition.second;
// left son
position(id) *= 2;
p_son(iposPoint, id)[0] = iterSon->second.find(position)->second;
// right son
position(id) += 1;
p_son(iposPoint, id)[1] = iterSon->second.find(position)->second;
}
}
else
{
for (const auto &iPosition : fatherLevel.second)
{
int iposPoint = iPosition.second;
p_son(iposPoint, id)[0] = -1;
p_son(iposPoint, id)[1] = -1;
}
}
level(id) -= 1;
}
}
}
// root
Eigen::ArrayXc levelRoot = Eigen::ArrayXc::Constant(p_idim, 1);
Eigen::ArrayXui positionRoot = Eigen::ArrayXui::Constant(p_idim, 0);
SparseSet::const_iterator iterLevel = p_dataSet.find(levelRoot);
SparseLevel::const_iterator iterPosition = iterLevel->second.find(positionRoot);
return iterPosition->second ;
}
}
|