1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifndef SPARSEGRIDUTILS_H
#define SPARSEGRIDUTILS_H
#include <array>
#include "StOpt/core/utils/comparisonUtils.h"
/** \file sparseGridUtils.h
* \brief utilitarian for sparse grids : permits to avoid calculations
* \author Xavier Warin
*/
namespace StOpt
{
/// \defgroup sparseUtils Utilitary for sparse grids
/// \brief Utilitarian for sparse grids
///@{
extern std::array<double, 23> deltaSparseMesh ; ///< size or semi size of the mesh by sparse grids
extern std::array<unsigned int, 21> lastNode; ///< node of last node associated to each level
extern std::array<int, 4> iNodeToFunc ; ///< helper for cubic hierarchization or dehierarchization
/// \brief for left and right Hierarchization, give weight for parent for cubic Hierarchization or Dehierarchization
///@{
extern std::array<double, 2> weightParent;
extern std::array<double, 2> weightGrandParent;
extern std::array<double, 2> weightQuadraticParent;
///@}
/// \brief function used to get genericity of sparse algorithms
/// Either the input is an Eigen::ArrayXd and the return is a double
/// or it is an Eigen::ArrayXXd and the return is an Eigen::ArrayXd
class DoubleOrArray
{
public:
/// \brief First operator()
/// \param p_x array used to get values
/// \param p_point index in the array
/// \return p_x(p_point)
inline double operator()(const Eigen::ArrayXd &p_x, const int &p_point) const
{
return p_x(p_point);
}
/// \brief Second operator ()
/// \param p_x array used to get values
/// \param p_point index in the array
/// \return p_x(p_point)
inline Eigen::ArrayXd operator()(const Eigen::ArrayXXd &p_x, const int &p_point) const
{
return p_x.col(p_point) ;
}
/// \brief Zero affectation
/// \param p_x vector to assign
///
inline void zero(double &p_x, const Eigen::ArrayXd &) const
{
p_x = 0;
}
/// \brief Zero affectation for array
/// \param p_x vector to assign
/// \param p_ut utilitarian to get size of object
inline void zero(Eigen::ArrayXd &p_x, const Eigen::ArrayXXd &p_ut) const
{
p_x = Eigen::ArrayXd::Zero(p_ut.rows());
}
/// \brief affectation operator
/// \param p_x array used to get values
/// \param p_point index in the array
/// \param p_affect value to affect
inline void affect(Eigen::ArrayXd &p_x, const int &p_point, const double &p_affect) const
{
p_x(p_point) = p_affect;
}
/// \brief second affectation operator
/// \param p_x array used to get values
/// \param p_point index in the array
/// \param p_affect value to affect
inline void affect(Eigen::ArrayXXd &p_x, const int &p_point, const Eigen::ArrayXd &p_affect) const
{
p_x.col(p_point) = p_affect;
}
/// \brief resize operator
/// \param p_x array to work on
/// \param p_size size to impose to the array
inline void resize(Eigen::ArrayXd &p_x, int p_size)
{
p_x.conservativeResize(p_size);
}
/// \brief resize operator
/// \param p_x array to work on
/// \param p_size size of the array
inline void resize(Eigen::ArrayXXd &p_x, int p_size)
{
int nRows = p_x.rows();
p_x.conservativeResize(nRows, p_size);
}
};
/// \brief Evaluate linear function basis
/// Basis on \f$ [ xMilde -1./unDx, xMilde+1./unDx]\f$
/// Hat function taking value 1 in xMilde, 0 in \f$ xMilde -1./unDx, xMilde+1./unDx \f$
/// Evaluation for \f$ x \in [ xMilde -1./unDx, xMilde+1./unDx] \f$
class LinearHatValue
{
double m_xMilde; ///< coordinate of the middle of the mesh
double m_unDx ; ///< one over size of mesh
double m_scale ; ///< scaling factor
public :
/// \brief Constructor
/// \param p_xMidle coordinate of the middle of the mesh
/// \param p_unDx one over size of mesh
LinearHatValue(const double &p_xMidle, const double &p_unDx) : m_xMilde(p_xMidle), m_unDx(p_unDx), m_scale(1.) {}
/// \brief Constructor
/// \param p_xMidle coordinate of the middle of the mesh
/// \param p_unDx one over size of mesh
/// \param p_scale scaling factor
LinearHatValue(const double &p_xMidle, const double &p_unDx, const double &p_scale) : m_xMilde(p_xMidle), m_unDx(p_unDx), m_scale(p_scale) {}
/// \brief operator ()
/// \param p_x Point coordinate where the function is evaluated
inline double operator()(const double &p_x) const
{
assert(isLesserOrEqual(std::fabs(m_xMilde - p_x)*m_unDx, 1.));
return m_scale * (1. - std::fabs(m_xMilde - p_x) * m_unDx);
}
};
/// \brief Evaluate quadratic function basis
/// Basis on \f$ [ xMilde -1./unDx, xMilde+1./unDx]\f$
/// Evaluation for \f$ x \in [ xMilde -1./unDx, xMilde+1./unDx] \f$
class QuadraticValue
{
double m_xMilde; ///< coordinate of the middle of the mesh
double m_unDx ; ///< one over size of mesh
public :
/// \brief Constructor
/// \param p_xMidle coordinate of the middle of the mesh
/// \param p_unDx one over size of mesh
QuadraticValue(const double &p_xMidle, const double &p_unDx): m_xMilde(p_xMidle), m_unDx(p_unDx) {}
/// \brief operator ()
/// \param p_x Point coordinate where the function is evaluated
inline double operator()(const double &p_x) const
{
assert(isLesserOrEqual(std::fabs(m_xMilde - p_x)*m_unDx, 1.));
double xInter = (m_xMilde - p_x) * m_unDx;
return (1 + xInter) * (1 - xInter);
}
};
/// \brief Evaluate Cubic function basis (left one)
class CubicLeftValue
{
private :
double m_unTiers;
double m_xMilde; ///< coordinate of the middle of the mesh
double m_unDx ; ///< one over size of mesh
public :
/// \brief Constructor
/// \param p_xMidle coordinate of the middle of the mesh
/// \param p_unDx one over size of mesh
CubicLeftValue(const double &p_xMidle, const double &p_unDx): m_unTiers(1. / 3.), m_xMilde(p_xMidle), m_unDx(p_unDx) {}
/// \brief operator ()
/// \param p_x Point coordinate where the function is evaluated
inline double operator()(const double &p_x) const
{
double xInter = (p_x - m_xMilde) * m_unDx;
if (std::fabs(xInter) > 1)
return 0.;
return (xInter * xInter - 1) * (xInter - 3) * m_unTiers;
}
};
/// \brief Evaluate Cubic function basis (right one)
class CubicRightValue
{
private :
double unTiers;
double m_xMilde; ///< coordinate of the middle of the mesh
double m_unDx ; ///< one over size of mesh
public :
/// \brief Constructor
/// \param p_xMidle coordinate of the middle of the mesh
/// \param p_unDx one over size of mesh
CubicRightValue(const double &p_xMidle, const double &p_unDx): unTiers(1. / 3.), m_xMilde(p_xMidle), m_unDx(p_unDx) {}
/// \brief operator ()
/// \param p_x Point coordinate where the function is evaluated
inline double operator()(const double &p_x) const
{
double xInter = (p_x - m_xMilde) * m_unDx;
return (1. - xInter * xInter) * (xInter + 3) * unTiers;
}
};
/// \brief One function
class OneFunction
{
public :
OneFunction() {}
/// \brief return one
inline double operator()(const double &) const
{
return 1;
}
};
/// \brief Permits to get non direct father of a point for a sparse grid without boundary points
class GetNonDirectFatherNoBound
{
public :
/// \brief Constructor
GetNonDirectFatherNoBound() {}
/// \param p_level level (to update)
/// \param p_position position (to update)
void inline operator()(char &p_level, unsigned int &p_position)
{
assert(p_level > 2);
unsigned int ip = p_position & 1; // 1 if even, 0 otherwise
unsigned int father = p_position >> 1;
p_position = (father >> 1); // grandfather
p_level -= 2 ;
// test if son is correct
while (((p_position << 1) | ip) == father)
{
father = p_position;
p_position = p_position >> 1;
p_level -= 1 ;
}
}
};
/// \brief Permits to get non direct father of a point for a sparse grid with boundary points
class GetNonDirectFatherBound
{
public :
/// \brief Constructor
GetNonDirectFatherBound() {}
/// \param p_level level (to update)
/// \param p_position position (to update)
void inline operator()(char &p_level, unsigned int &p_position)
{
assert(p_level > 1);
if (p_position == 0)
{
p_level = 1 ;
p_position = 0;
return ;
}
else if (p_position == lastNode[p_level - 1])
{
p_level = 1 ;
p_position = 2;
return ;
}
unsigned int ip = p_position & 1; // 1 if even, 0 otherwise
unsigned int father = p_position >> 1;
p_position = (father >> 1); // grandfather
p_level -= 2 ;
// test if son is correct
while (((p_position << 1) | ip) == father)
{
father = p_position;
p_position = p_position >> 1;
p_level -= 1 ;
}
// correct if first level
if (p_level == 1)
p_position = 1 ;
}
};
/// \brief permits to get direct father for sparse grids without boundary points
class GetDirectFatherNoBound
{
public :
/// \brief Constructor
GetDirectFatherNoBound() {}
/// \param p_level level (to update)
/// \param p_position position (to update)
void inline operator()(char &p_level, unsigned int &p_position)
{
p_level -= 1 ;
p_position = (p_position >> 1) ;
}
};
/// \brief permits to get direct father for sparse grids with boundary points
class GetDirectFatherBound
{
public :
/// \brief Constructor
GetDirectFatherBound() {}
/// \param p_level level (to update)
/// \param p_position position (to update)
void inline operator()(char &p_level, unsigned int &p_position)
{
assert(p_level > 1);
if (p_level == 2)
{
p_level = 1 ;
p_position = 1 ; // centrer point
}
else
{
p_level -= 1 ;
p_position = (p_position >> 1) ;
}
}
};
///@}
}
#endif /* SPARSEGRIDUTILS.H */
|