1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
#include <iterator>
#include <iostream>
#include <vector>
#include <Eigen/Dense>
#include "KDTree.h"
using namespace std;
using namespace Eigen;
namespace StOpt
{
/// compare in a given dimension 2 points
class comparePt
{
public:
size_t m_idx;
explicit comparePt(size_t p_idx): m_idx(p_idx) {}
// inline bool compareInDim(
bool operator()(
const pair< ArrayXd, size_t > &a,
const pair< ArrayXd, size_t > &b
)
{
return (a.first(m_idx) < b.first(m_idx));
}
};
inline double dist2(const ArrayXd &a, const ArrayXd &b)
{
double distc = 0;
for (int i = 0; i < a.size(); i++)
{
double di = a(i) - b(i);
distc += di * di;
}
return distc;
}
inline double dist2(const shared_ptr< KDNode > &a, const shared_ptr< KDNode > &b)
{
return dist2(a->getPoint(), b->getPoint());
}
KDTree::KDTree(const ArrayXXd &points)
{
m_leaf = make_shared<KDNode>();
vector< pair< ArrayXd, size_t> > vecPoints(points.cols());
for (int i = 0; i < points.cols(); ++i)
vecPoints[i] = make_pair(points.col(i), i);
auto beg = vecPoints.begin();
auto end = vecPoints.end();
int level = 0;
m_root = createTree(beg, end, vecPoints.size(), level);
}
shared_ptr<KDNode> KDTree::createTree(const vector<pair< ArrayXd, size_t>>::iterator &p_beg,
const vector<pair< ArrayXd, size_t>>::iterator &p_end,
const size_t &p_nbPoints,
const size_t &p_level)
{
if (p_beg == p_end)
{
return shared_ptr< KDNode >(); // empty tree
}
size_t dim = p_beg->first.size();
if (p_nbPoints > 1)
{
sort(p_beg, p_end, comparePt(p_level));
}
auto middle = p_beg + (p_nbPoints / 2);
auto lbeg = p_beg;
auto lend = middle;
auto rbeg = middle + 1;
auto rend = p_end;
size_t llen = p_nbPoints / 2;
size_t rlen = p_nbPoints - llen - 1;
shared_ptr< KDNode > left;
if (llen > 0 && dim > 0)
{
left = createTree(lbeg, lend, llen, (p_level + 1) % dim);
}
else
{
left = m_leaf;
}
shared_ptr< KDNode > right;
if (rlen > 0 && dim > 0)
{
right = createTree(rbeg, rend, rlen, (p_level + 1) % dim);
}
else
{
right = m_leaf;
}
// KDNode result = KDNode();
return make_shared< KDNode >(*middle, left, right);
}
shared_ptr< KDNode > KDTree::nearest(
const shared_ptr< KDNode > &p_branch,
const ArrayXd &p_pt,
const size_t &p_level,
const shared_ptr< KDNode > &p_best,
const double &p_bestDist) const
{
double d, dx, dx2;
if (p_branch->isEmpty())
{
return make_shared<KDNode>(); // basically, null
}
ArrayXd branchPt = p_branch->getPoint();
size_t dim = branchPt.size();
d = dist2(branchPt, p_pt);
dx = branchPt(p_level) - p_pt(p_level);
dx2 = dx * dx;
shared_ptr< KDNode > bestLoc = p_best;
double bestDistLoc = p_bestDist;
if (d < p_bestDist)
{
bestDistLoc = d;
bestLoc = p_branch;
}
size_t nextLevel = (p_level + 1) % dim;
shared_ptr< KDNode > section;
shared_ptr< KDNode > other;
// select which p_branch to check
if (dx > 0)
{
section = p_branch->getLeft();
other = p_branch->getRight();
}
else
{
section = p_branch->getRight();
other = p_branch->getLeft();
}
// keep nearest neighbor from further down the tree
shared_ptr< KDNode > further = nearest(section, p_pt, nextLevel, bestLoc, bestDistLoc);
if (!further->isEmpty())
{
double dl = dist2(further->getPoint(), p_pt);
if (dl < bestDistLoc)
{
bestDistLoc = dl;
bestLoc = further;
}
// only check the other p_branch if it makes sense to do so
if (dx2 < bestDistLoc)
{
further = nearest(other, p_pt, nextLevel, bestLoc, bestDistLoc);
if (!further->isEmpty())
{
dl = dist2(further->getPoint(), p_pt);
if (dl < bestDistLoc)
{
bestDistLoc = dl;
bestLoc = further;
}
}
}
}
return bestLoc;
}
shared_ptr< KDNode > KDTree::nearestNode(const ArrayXd &p_pt) const
{
size_t level = 0;
double branchDist = dist2(m_root->getPoint(), p_pt);
return nearest(m_root, // beginning of tree
p_pt, // point we are querying
level, // start from level 0
m_root, // best is the root
branchDist); // best_dist = branch_dist
}
}
|