1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
|
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifndef FINALSTEPZERODIST_H
#define FINALSTEPZERODIST_H
#include <functional>
#include <memory>
#include <vector>
#include <boost/mpi.hpp>
#include <Eigen/Dense>
#include "StOpt/core/parallelism/ParallelComputeGridSplitting.h"
/** \file FinalStepZeroDist.h
* \brief permits to affect 0 to the final value
* \author Xavier Warin
*/
namespace StOpt
{
/// \class FinalStepZeroDist FinalStepZeroDist.h
/// Last time in dynamic programming : set to 0
/// Each regime has a grid with same dimension
template< class grid>
class FinalStepZeroDist
{
private :
std::vector<std::shared_ptr< grid> > m_pGridCurrent; ///< grid at final time step
std::vector<std::shared_ptr< grid> > m_gridCurrentProc ; ///< local grid treated by the processor
int m_nbRegime ; ///< Number of regimes
public:
/// \brief Contructor
/// \param p_pGridCurrent grids describing the whole problem for each regime
/// \param p_bdimToSplit Dimensions to split for parallelism ofr each regime
/// \param p_world MPI communicator
FinalStepZeroDist(const std::vector< std::shared_ptr< grid > > &p_pGridCurrent,
const std::vector< Eigen::Array< bool, Eigen::Dynamic, 1> > &p_bdimToSplit,
const boost::mpi::communicator &p_world):
m_pGridCurrent(p_pGridCurrent),
m_gridCurrentProc(p_pGridCurrent.size()),
m_nbRegime(p_pGridCurrent.size())
{
for (int iReg = 0; iReg < m_nbRegime; ++iReg)
{
// initial dimension
Eigen::ArrayXi initialDimension = p_pGridCurrent[iReg]->getDimensions();
// organize the hypercube splitting for parallel
Eigen::ArrayXi splittingRatio = paraOptimalSplitting(initialDimension, p_bdimToSplit[iReg], p_world);
// grid treated by current processor
m_gridCurrentProc[iReg] = m_pGridCurrent[iReg]->getSubGrid(paraSplitComputationGridsProc(initialDimension, splittingRatio, p_world.rank()));
}
}
/// \brief Fill array with 0 for each processor
/// \param p_nbSimul number of particles
std::vector< std::shared_ptr< Eigen::ArrayXXd > > operator()(const int &p_nbSimul) const
{
std::vector<std::shared_ptr< Eigen::ArrayXXd > > finalValues(m_nbRegime);
for (int iReg = 0; iReg < m_nbRegime; ++iReg)
{
if (m_gridCurrentProc[iReg]->getNbPoints() > 0)
{
finalValues[iReg] = std::make_shared<Eigen::ArrayXXd>(Eigen::ArrayXXd::Zero(p_nbSimul, m_gridCurrentProc[iReg]->getNbPoints()));
}
else
{
finalValues[iReg] = std::make_shared<Eigen::ArrayXXd>();
}
}
return finalValues;
}
/// \brief get back local grid for each regime associated to current step
inline std::vector< std::shared_ptr<grid> > getGridCurrentProc()const
{
return m_gridCurrentProc ;
}
};
}
#endif
|