File: SimulateStepMultiStageRegressionDist.cpp

package info (click to toggle)
stopt 5.12%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,860 kB
  • sloc: cpp: 70,456; python: 5,950; makefile: 72; sh: 57
file content (267 lines) | stat: -rw-r--r-- 13,799 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// Copyright (C) 2023 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifdef USE_MPI
#include "geners/Reference.hh"
#include "geners/vectorIO.hh"
#include "StOpt/dp/SimulateStepMultiStageRegressionDist.h"
#include "StOpt/core/utils/eigenGeners.h"
#include "StOpt/core/utils/primeNumber.h"
#include "StOpt/core/utils/NodeParticleSplitting.h"
#include "StOpt/core/utils/types.h"
#include "StOpt/core/parallelism/all_gatherv.hpp"

using namespace std;
using namespace StOpt;
using namespace Eigen;


SimulateStepMultiStageRegressionDist::SimulateStepMultiStageRegressionDist(const shared_ptr<gs::BinaryFileArchive> &p_ar,
        const int &p_iStep,  const string &p_nameCont,
        const string &p_nameDetCont,
        const  shared_ptr<FullGrid> &p_pGridCurrent,
        const  shared_ptr<FullGrid> &p_pGridFollowing,
        const  shared_ptr<OptimizerMultiStageDPBase > &p_pOptimize,
        const bool &p_bOneFile,
        const boost::mpi::communicator &p_world):
    m_pGridCurrent(p_pGridCurrent),
    m_pGridFollowing(p_pGridFollowing),
    m_pOptimize(p_pOptimize),
    m_ar(p_ar), m_iStep(p_iStep), m_nameCont(p_nameCont), m_nameDetCont(p_nameDetCont),
    m_bOneFile(p_bOneFile), m_world(p_world)
{
}

vector< GridAndRegressedValue> SimulateStepMultiStageRegressionDist::readContinuationInArchive(const string &p_name, const string &p_stepString)
{
    vector< GridAndRegressedValue>  continuationObj;
    gs::Reference< vector< GridAndRegressedValue> >(*m_ar, (p_name + "Values").c_str(), p_stepString.c_str()).restore(0, &continuationObj);
    return continuationObj;
}

pair< shared_ptr<BaseRegression>, vector< ArrayXXd > >  SimulateStepMultiStageRegressionDist::readRegressedValues(const string &p_name, const string &p_stepString)
{
    vector<int> initialVecDimensionFollow;
    gs::Reference< 	vector<int> >(*m_ar, "initialSizeOfMeshPrev", p_stepString.c_str()).restore(0, &initialVecDimensionFollow);
    Map<const ArrayXi > initialDimensionFollow(initialVecDimensionFollow.data(), initialVecDimensionFollow.size());
    ArrayXi splittingRatio = paraOptimalSplitting(initialDimensionFollow, m_pOptimize->getDimensionToSplit(), m_world);
    m_parall =  make_shared<ParallelComputeGridSplitting>(initialDimensionFollow, splittingRatio, m_world);
    vector< ArrayXXd > contValue;
    gs::Reference< vector< ArrayXXd > >(*m_ar, (p_name + "Values").c_str(), p_stepString.c_str()).restore(0, &contValue);
    shared_ptr<BaseRegression>  regressor = gs::Reference< BaseRegression >(*m_ar, (p_name + "regressor").c_str(), p_stepString.c_str()).get(0);
    return make_pair(regressor, contValue);
}

pair<vector<int>, vector<  array< double, 2>  >  > SimulateStepMultiStageRegressionDist::splitParticleOnProcessor(const vector<StateWithStocks >    &p_statevector, const shared_ptr<FullGrid> &p_gridFollow)const
{
    unique_ptr<ArrayXXd >  particles(new ArrayXXd(p_statevector.size(), p_gridFollow->getDimension()));
    for (size_t is = 0; is < p_statevector.size(); ++is)
        for (int isto = 0; isto < p_gridFollow->getDimension(); ++isto)
            (*particles)(is, isto) = p_statevector[is].getPtStock()(isto);
    ArrayXi splittingRatio = ArrayXi::Constant(p_gridFollow->getDimension(), 1);
    vector<int> prime = primeNumber(m_world.size());
    int idim = 0; // roll the dimensions
    for (size_t i = 0; i < prime.size(); ++i)
    {
        splittingRatio(idim % p_gridFollow->getDimension()) *= prime[i];
        idim += 1;
    }
    // create object to split particules on processor
    NodeParticleSplitting splitparticle(particles, splittingRatio);
    // each simulation to a cell
    ArrayXi nCell(p_statevector.size());
    Array<  array<double, 2 >, Dynamic, Dynamic > meshToCoord(p_gridFollow->getDimension(), m_world.size());
    splitparticle.simToCell(nCell, meshToCoord);
    // simulation for current processor
    vector< int > simCurrentProc;
    simCurrentProc.reserve(2 * p_statevector.size() / m_world.size()) ; // use a margin
    for (size_t is = 0; is <  p_statevector.size(); ++is)
        if (nCell(is) == m_world.rank())
            simCurrentProc.push_back(is);
    vector<  array< double, 2>  >  regionByProcessor(splittingRatio.size());
    for (int id = 0; id < splittingRatio.size() ; ++id)
        regionByProcessor[id] = meshToCoord(id, m_world.rank());
    return make_pair(simCurrentProc, regionByProcessor);
}

SubMeshIntCoord  SimulateStepMultiStageRegressionDist::calculateSubMeshExtended(const shared_ptr<FullGrid> &p_gridFollow, const vector<  array< double, 2>  >   &p_regionByProcessor) const
{
    vector<  array< double, 2>  > cone = m_pOptimize->getCone(p_regionByProcessor);
    // now get subgrid correspond to the cone
    SubMeshIntCoord retGrid(p_gridFollow->getDimension());
    vector <array< double, 2>  > extremVal =  p_gridFollow->getExtremeValues();
    ArrayXd xCapMin(p_gridFollow->getDimension()), xCapMax(p_gridFollow->getDimension());
    for (int id = 0; id <  p_gridFollow->getDimension(); ++id)
    {
        xCapMin(id)   = max(cone[id][0], extremVal[id][0]);
        xCapMax(id)  = min(cone[id][1], extremVal[id][1]);
    }
    ArrayXi  iCapMin =  p_gridFollow->lowerPositionCoord(xCapMin);
    ArrayXi  iCapMax =  p_gridFollow->upperPositionCoord(xCapMax) + 1; // last is excluded
    for (int id = 0; id <  p_gridFollow->getDimension(); ++id)
    {
        retGrid(id)[0] = iCapMin(id);
        retGrid(id)[1] = iCapMax(id);
    }
    return retGrid;
}

void SimulateStepMultiStageRegressionDist::oneStep(vector<StateWithStocks > &p_statevector, vector<ArrayXXd>  &p_phiInOut)
{

    shared_ptr< SimulatorMultiStageDPBase > simulator = m_pOptimize->getSimulator();
    int  nbPeriodsOfCurrentStep = simulator->getNbPeriodsInTransition();

    if (m_bOneFile)
    {
        pair< vector<int>, vector<  array< double, 2>  > > simToProcAndRegion =  splitParticleOnProcessor(p_statevector, m_pGridFollowing);
        size_t nbSimCurProc = simToProcAndRegion.first.size();
        // nows store stocks
        ArrayXd stockPerSim(m_pGridFollowing->getDimension()*nbSimCurProc);
        // nows store regimes
        ArrayXi regimePerSim(nbSimCurProc);
        // store value functions
        ArrayXXd valueFunctionPerSim(m_pOptimize->getSimuFuncSize(), nbSimCurProc);
        // store all the simulation results
        vector<int> simAllProc;

        for (int iPeriod = 0; iPeriod < nbPeriodsOfCurrentStep ; iPeriod++)
        {
            // set period number in simulator
            simulator->setPeriodInTransition(iPeriod);
            // to store the next grid
            vector< GridAndRegressedValue > contVal;
            shared_ptr< FullGrid> gridFollLoc;
            if (iPeriod == (nbPeriodsOfCurrentStep - 1))
            {
                contVal = readContinuationInArchive(m_nameCont, boost::lexical_cast<string>(m_iStep));
                gridFollLoc = m_pGridFollowing;
            }
            else
            {
                contVal = readContinuationInArchive(m_nameDetCont, boost::lexical_cast<string>(iPeriod));
                gridFollLoc = m_pGridCurrent;
            }
            // spread calculations on processors
            for (size_t is = 0; is <  nbSimCurProc; ++is)
            {
                int simuNumber = simToProcAndRegion.first[is];
                m_pOptimize->stepSimulate(gridFollLoc, contVal, p_statevector[simuNumber], p_phiInOut[iPeriod].col(simuNumber));
                // store for broadcast
                stockPerSim.segment(is * gridFollLoc->getDimension(), gridFollLoc->getDimension()) = p_statevector[simuNumber].getPtStock();
                regimePerSim(is) = p_statevector[simuNumber].getRegime();
                if (valueFunctionPerSim.size() > 0)
                    valueFunctionPerSim.col(is) = p_phiInOut[iPeriod].col(simuNumber);
            }
            vector<double> valueFunctionAllSim;
            boost::mpi::all_gatherv<double>(m_world, valueFunctionPerSim.data(), valueFunctionPerSim.size(), valueFunctionAllSim);
            boost::mpi::all_gatherv<int>(m_world, simToProcAndRegion.first.data(), nbSimCurProc, simAllProc);
            int iis = 0;
            for (size_t is = 0; is < simAllProc.size(); ++is)
            {
                for (int iid = 0; iid < m_pOptimize->getSimuFuncSize(); ++iid)
                    p_phiInOut[iPeriod](iid, simAllProc[is]) = valueFunctionAllSim[iis++];
            }
            //prepare next period
            if (iPeriod < nbPeriodsOfCurrentStep - 1)
            {
                p_phiInOut[iPeriod + 1] = p_phiInOut[iPeriod];
            }
        }
        // broadcast
        vector<double> stockAllSim;
        boost::mpi::all_gatherv<double>(m_world, stockPerSim.data(), stockPerSim.size(), stockAllSim);
        vector<int> regimeAllSim;
        boost::mpi::all_gatherv<int>(m_world, regimePerSim.data(), regimePerSim.size(), regimeAllSim);
        // update results
        for (size_t is = 0; is < simAllProc.size(); ++is)
        {
            Map<const ArrayXd >  ptStock(&stockAllSim[is * m_pGridFollowing->getDimension()], m_pGridFollowing->getDimension());
            p_statevector[simAllProc[is]].setPtStock(ptStock);
            p_statevector[simAllProc[is]].setRegime(regimeAllSim[is]);
        }
    }
    else
    {
        for (int iPeriod = 0; iPeriod < nbPeriodsOfCurrentStep ; iPeriod++)
        {
            // set period number in simulator
            simulator->setPeriodInTransition(iPeriod);

            // to store the next grid
            shared_ptr< FullGrid> gridFollLoc;
            int nbRegime = -1;
            pair< shared_ptr<BaseRegression>, vector< ArrayXXd > >  regAndVal;
            if (iPeriod == (nbPeriodsOfCurrentStep - 1))
            {
                gridFollLoc = m_pGridFollowing;
                nbRegime = m_pOptimize->getNbRegime();
                regAndVal  = readRegressedValues(m_nameCont, boost::lexical_cast<string>(m_iStep));
            }
            else
            {
                gridFollLoc = m_pGridCurrent ;
                nbRegime = m_pOptimize->getNbDetRegime();
                regAndVal  = readRegressedValues(m_nameDetCont, boost::lexical_cast<string>(iPeriod));
            }
            pair< vector<int>, vector< array< double, 2>  > > simToProcAndRegion =  splitParticleOnProcessor(p_statevector, gridFollLoc);
            // number of particle for the current processor
            size_t nbSimCurProc = simToProcAndRegion.first.size();
            // nows store stocks
            ArrayXd stockPerSim(m_pGridFollowing->getDimension()*nbSimCurProc);
            // nows store regimes
            ArrayXi regimePerSim(nbSimCurProc);
            // store value functions
            ArrayXXd valueFunctionPerSim(m_pOptimize->getSimuFuncSize(), nbSimCurProc);
            // extend continuation values
            SubMeshIntCoord retGrid = calculateSubMeshExtended(gridFollLoc, simToProcAndRegion.second)  ;
            shared_ptr<FullGrid> gridExtended = gridFollLoc->getSubGrid(retGrid);
            vector< GridAndRegressedValue >  continuationExtended;
            // read regressed values on archive
            continuationExtended.reserve(nbRegime);
            for (int iReg = 0; iReg < nbRegime; ++iReg)
            {
                ArrayXXd valuesExtended = m_parall->reconstructAll<double>(regAndVal.second[iReg], retGrid);
                continuationExtended.push_back(GridAndRegressedValue(gridExtended, regAndVal.first));
                // affect
                continuationExtended[iReg].setRegressedValues(valuesExtended);
            }
            // spread calculations on processors
            for (size_t is = 0; is <  nbSimCurProc; ++is)
            {
                int simuNumber = simToProcAndRegion.first[is];;
                m_pOptimize->stepSimulate(gridFollLoc, continuationExtended,  p_statevector[simuNumber], p_phiInOut[iPeriod].col(simuNumber));
                // store for broadcast
                stockPerSim.segment(is * gridFollLoc->getDimension(), gridFollLoc->getDimension()) = p_statevector[simuNumber].getPtStock();
                regimePerSim(is) = p_statevector[simuNumber].getRegime();
                if (valueFunctionPerSim.size() > 0)
                    valueFunctionPerSim.col(is) = p_phiInOut[iPeriod].col(simuNumber);
            }
            // broadcast
            vector<double> stockAllSim;
            boost::mpi::all_gatherv<double>(m_world, stockPerSim.data(), stockPerSim.size(), stockAllSim);
            vector<int> regimeAllSim;
            boost::mpi::all_gatherv<int>(m_world, regimePerSim.data(), regimePerSim.size(), regimeAllSim);
            vector<double> valueFunctionAllSim;
            boost::mpi::all_gatherv<double>(m_world, valueFunctionPerSim.data(), valueFunctionPerSim.size(), valueFunctionAllSim);
            vector<int> simAllProc;
            boost::mpi::all_gatherv<int>(m_world, simToProcAndRegion.first.data(), nbSimCurProc, simAllProc);
            // update results
            int iis = 0;
            for (size_t is = 0; is < simAllProc.size(); ++is)
            {
                for (int iid = 0; iid < m_pOptimize->getSimuFuncSize(); ++iid)
                    p_phiInOut[iPeriod](iid, simAllProc[is]) = valueFunctionAllSim[iis++];
                Map<const ArrayXd >  ptStock(&stockAllSim[is * m_pGridFollowing->getDimension()], m_pGridFollowing->getDimension());
                p_statevector[simAllProc[is]].setPtStock(ptStock);
                p_statevector[simAllProc[is]].setRegime(regimeAllSim[is]);
            }
            //prepare next period
            if (iPeriod < nbPeriodsOfCurrentStep - 1)
            {
                p_phiInOut[iPeriod + 1] = p_phiInOut[iPeriod];
            }
        }
    }
}
#endif