1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
// Copyright (C) 2023 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifdef USE_MPI
#include "geners/Reference.hh"
#include "geners/vectorIO.hh"
#include "StOpt/dp/SimulateStepMultiStageRegressionDist.h"
#include "StOpt/core/utils/eigenGeners.h"
#include "StOpt/core/utils/primeNumber.h"
#include "StOpt/core/utils/NodeParticleSplitting.h"
#include "StOpt/core/utils/types.h"
#include "StOpt/core/parallelism/all_gatherv.hpp"
using namespace std;
using namespace StOpt;
using namespace Eigen;
SimulateStepMultiStageRegressionDist::SimulateStepMultiStageRegressionDist(const shared_ptr<gs::BinaryFileArchive> &p_ar,
const int &p_iStep, const string &p_nameCont,
const string &p_nameDetCont,
const shared_ptr<FullGrid> &p_pGridCurrent,
const shared_ptr<FullGrid> &p_pGridFollowing,
const shared_ptr<OptimizerMultiStageDPBase > &p_pOptimize,
const bool &p_bOneFile,
const boost::mpi::communicator &p_world):
m_pGridCurrent(p_pGridCurrent),
m_pGridFollowing(p_pGridFollowing),
m_pOptimize(p_pOptimize),
m_ar(p_ar), m_iStep(p_iStep), m_nameCont(p_nameCont), m_nameDetCont(p_nameDetCont),
m_bOneFile(p_bOneFile), m_world(p_world)
{
}
vector< GridAndRegressedValue> SimulateStepMultiStageRegressionDist::readContinuationInArchive(const string &p_name, const string &p_stepString)
{
vector< GridAndRegressedValue> continuationObj;
gs::Reference< vector< GridAndRegressedValue> >(*m_ar, (p_name + "Values").c_str(), p_stepString.c_str()).restore(0, &continuationObj);
return continuationObj;
}
pair< shared_ptr<BaseRegression>, vector< ArrayXXd > > SimulateStepMultiStageRegressionDist::readRegressedValues(const string &p_name, const string &p_stepString)
{
vector<int> initialVecDimensionFollow;
gs::Reference< vector<int> >(*m_ar, "initialSizeOfMeshPrev", p_stepString.c_str()).restore(0, &initialVecDimensionFollow);
Map<const ArrayXi > initialDimensionFollow(initialVecDimensionFollow.data(), initialVecDimensionFollow.size());
ArrayXi splittingRatio = paraOptimalSplitting(initialDimensionFollow, m_pOptimize->getDimensionToSplit(), m_world);
m_parall = make_shared<ParallelComputeGridSplitting>(initialDimensionFollow, splittingRatio, m_world);
vector< ArrayXXd > contValue;
gs::Reference< vector< ArrayXXd > >(*m_ar, (p_name + "Values").c_str(), p_stepString.c_str()).restore(0, &contValue);
shared_ptr<BaseRegression> regressor = gs::Reference< BaseRegression >(*m_ar, (p_name + "regressor").c_str(), p_stepString.c_str()).get(0);
return make_pair(regressor, contValue);
}
pair<vector<int>, vector< array< double, 2> > > SimulateStepMultiStageRegressionDist::splitParticleOnProcessor(const vector<StateWithStocks > &p_statevector, const shared_ptr<FullGrid> &p_gridFollow)const
{
unique_ptr<ArrayXXd > particles(new ArrayXXd(p_statevector.size(), p_gridFollow->getDimension()));
for (size_t is = 0; is < p_statevector.size(); ++is)
for (int isto = 0; isto < p_gridFollow->getDimension(); ++isto)
(*particles)(is, isto) = p_statevector[is].getPtStock()(isto);
ArrayXi splittingRatio = ArrayXi::Constant(p_gridFollow->getDimension(), 1);
vector<int> prime = primeNumber(m_world.size());
int idim = 0; // roll the dimensions
for (size_t i = 0; i < prime.size(); ++i)
{
splittingRatio(idim % p_gridFollow->getDimension()) *= prime[i];
idim += 1;
}
// create object to split particules on processor
NodeParticleSplitting splitparticle(particles, splittingRatio);
// each simulation to a cell
ArrayXi nCell(p_statevector.size());
Array< array<double, 2 >, Dynamic, Dynamic > meshToCoord(p_gridFollow->getDimension(), m_world.size());
splitparticle.simToCell(nCell, meshToCoord);
// simulation for current processor
vector< int > simCurrentProc;
simCurrentProc.reserve(2 * p_statevector.size() / m_world.size()) ; // use a margin
for (size_t is = 0; is < p_statevector.size(); ++is)
if (nCell(is) == m_world.rank())
simCurrentProc.push_back(is);
vector< array< double, 2> > regionByProcessor(splittingRatio.size());
for (int id = 0; id < splittingRatio.size() ; ++id)
regionByProcessor[id] = meshToCoord(id, m_world.rank());
return make_pair(simCurrentProc, regionByProcessor);
}
SubMeshIntCoord SimulateStepMultiStageRegressionDist::calculateSubMeshExtended(const shared_ptr<FullGrid> &p_gridFollow, const vector< array< double, 2> > &p_regionByProcessor) const
{
vector< array< double, 2> > cone = m_pOptimize->getCone(p_regionByProcessor);
// now get subgrid correspond to the cone
SubMeshIntCoord retGrid(p_gridFollow->getDimension());
vector <array< double, 2> > extremVal = p_gridFollow->getExtremeValues();
ArrayXd xCapMin(p_gridFollow->getDimension()), xCapMax(p_gridFollow->getDimension());
for (int id = 0; id < p_gridFollow->getDimension(); ++id)
{
xCapMin(id) = max(cone[id][0], extremVal[id][0]);
xCapMax(id) = min(cone[id][1], extremVal[id][1]);
}
ArrayXi iCapMin = p_gridFollow->lowerPositionCoord(xCapMin);
ArrayXi iCapMax = p_gridFollow->upperPositionCoord(xCapMax) + 1; // last is excluded
for (int id = 0; id < p_gridFollow->getDimension(); ++id)
{
retGrid(id)[0] = iCapMin(id);
retGrid(id)[1] = iCapMax(id);
}
return retGrid;
}
void SimulateStepMultiStageRegressionDist::oneStep(vector<StateWithStocks > &p_statevector, vector<ArrayXXd> &p_phiInOut)
{
shared_ptr< SimulatorMultiStageDPBase > simulator = m_pOptimize->getSimulator();
int nbPeriodsOfCurrentStep = simulator->getNbPeriodsInTransition();
if (m_bOneFile)
{
pair< vector<int>, vector< array< double, 2> > > simToProcAndRegion = splitParticleOnProcessor(p_statevector, m_pGridFollowing);
size_t nbSimCurProc = simToProcAndRegion.first.size();
// nows store stocks
ArrayXd stockPerSim(m_pGridFollowing->getDimension()*nbSimCurProc);
// nows store regimes
ArrayXi regimePerSim(nbSimCurProc);
// store value functions
ArrayXXd valueFunctionPerSim(m_pOptimize->getSimuFuncSize(), nbSimCurProc);
// store all the simulation results
vector<int> simAllProc;
for (int iPeriod = 0; iPeriod < nbPeriodsOfCurrentStep ; iPeriod++)
{
// set period number in simulator
simulator->setPeriodInTransition(iPeriod);
// to store the next grid
vector< GridAndRegressedValue > contVal;
shared_ptr< FullGrid> gridFollLoc;
if (iPeriod == (nbPeriodsOfCurrentStep - 1))
{
contVal = readContinuationInArchive(m_nameCont, boost::lexical_cast<string>(m_iStep));
gridFollLoc = m_pGridFollowing;
}
else
{
contVal = readContinuationInArchive(m_nameDetCont, boost::lexical_cast<string>(iPeriod));
gridFollLoc = m_pGridCurrent;
}
// spread calculations on processors
for (size_t is = 0; is < nbSimCurProc; ++is)
{
int simuNumber = simToProcAndRegion.first[is];
m_pOptimize->stepSimulate(gridFollLoc, contVal, p_statevector[simuNumber], p_phiInOut[iPeriod].col(simuNumber));
// store for broadcast
stockPerSim.segment(is * gridFollLoc->getDimension(), gridFollLoc->getDimension()) = p_statevector[simuNumber].getPtStock();
regimePerSim(is) = p_statevector[simuNumber].getRegime();
if (valueFunctionPerSim.size() > 0)
valueFunctionPerSim.col(is) = p_phiInOut[iPeriod].col(simuNumber);
}
vector<double> valueFunctionAllSim;
boost::mpi::all_gatherv<double>(m_world, valueFunctionPerSim.data(), valueFunctionPerSim.size(), valueFunctionAllSim);
boost::mpi::all_gatherv<int>(m_world, simToProcAndRegion.first.data(), nbSimCurProc, simAllProc);
int iis = 0;
for (size_t is = 0; is < simAllProc.size(); ++is)
{
for (int iid = 0; iid < m_pOptimize->getSimuFuncSize(); ++iid)
p_phiInOut[iPeriod](iid, simAllProc[is]) = valueFunctionAllSim[iis++];
}
//prepare next period
if (iPeriod < nbPeriodsOfCurrentStep - 1)
{
p_phiInOut[iPeriod + 1] = p_phiInOut[iPeriod];
}
}
// broadcast
vector<double> stockAllSim;
boost::mpi::all_gatherv<double>(m_world, stockPerSim.data(), stockPerSim.size(), stockAllSim);
vector<int> regimeAllSim;
boost::mpi::all_gatherv<int>(m_world, regimePerSim.data(), regimePerSim.size(), regimeAllSim);
// update results
for (size_t is = 0; is < simAllProc.size(); ++is)
{
Map<const ArrayXd > ptStock(&stockAllSim[is * m_pGridFollowing->getDimension()], m_pGridFollowing->getDimension());
p_statevector[simAllProc[is]].setPtStock(ptStock);
p_statevector[simAllProc[is]].setRegime(regimeAllSim[is]);
}
}
else
{
for (int iPeriod = 0; iPeriod < nbPeriodsOfCurrentStep ; iPeriod++)
{
// set period number in simulator
simulator->setPeriodInTransition(iPeriod);
// to store the next grid
shared_ptr< FullGrid> gridFollLoc;
int nbRegime = -1;
pair< shared_ptr<BaseRegression>, vector< ArrayXXd > > regAndVal;
if (iPeriod == (nbPeriodsOfCurrentStep - 1))
{
gridFollLoc = m_pGridFollowing;
nbRegime = m_pOptimize->getNbRegime();
regAndVal = readRegressedValues(m_nameCont, boost::lexical_cast<string>(m_iStep));
}
else
{
gridFollLoc = m_pGridCurrent ;
nbRegime = m_pOptimize->getNbDetRegime();
regAndVal = readRegressedValues(m_nameDetCont, boost::lexical_cast<string>(iPeriod));
}
pair< vector<int>, vector< array< double, 2> > > simToProcAndRegion = splitParticleOnProcessor(p_statevector, gridFollLoc);
// number of particle for the current processor
size_t nbSimCurProc = simToProcAndRegion.first.size();
// nows store stocks
ArrayXd stockPerSim(m_pGridFollowing->getDimension()*nbSimCurProc);
// nows store regimes
ArrayXi regimePerSim(nbSimCurProc);
// store value functions
ArrayXXd valueFunctionPerSim(m_pOptimize->getSimuFuncSize(), nbSimCurProc);
// extend continuation values
SubMeshIntCoord retGrid = calculateSubMeshExtended(gridFollLoc, simToProcAndRegion.second) ;
shared_ptr<FullGrid> gridExtended = gridFollLoc->getSubGrid(retGrid);
vector< GridAndRegressedValue > continuationExtended;
// read regressed values on archive
continuationExtended.reserve(nbRegime);
for (int iReg = 0; iReg < nbRegime; ++iReg)
{
ArrayXXd valuesExtended = m_parall->reconstructAll<double>(regAndVal.second[iReg], retGrid);
continuationExtended.push_back(GridAndRegressedValue(gridExtended, regAndVal.first));
// affect
continuationExtended[iReg].setRegressedValues(valuesExtended);
}
// spread calculations on processors
for (size_t is = 0; is < nbSimCurProc; ++is)
{
int simuNumber = simToProcAndRegion.first[is];;
m_pOptimize->stepSimulate(gridFollLoc, continuationExtended, p_statevector[simuNumber], p_phiInOut[iPeriod].col(simuNumber));
// store for broadcast
stockPerSim.segment(is * gridFollLoc->getDimension(), gridFollLoc->getDimension()) = p_statevector[simuNumber].getPtStock();
regimePerSim(is) = p_statevector[simuNumber].getRegime();
if (valueFunctionPerSim.size() > 0)
valueFunctionPerSim.col(is) = p_phiInOut[iPeriod].col(simuNumber);
}
// broadcast
vector<double> stockAllSim;
boost::mpi::all_gatherv<double>(m_world, stockPerSim.data(), stockPerSim.size(), stockAllSim);
vector<int> regimeAllSim;
boost::mpi::all_gatherv<int>(m_world, regimePerSim.data(), regimePerSim.size(), regimeAllSim);
vector<double> valueFunctionAllSim;
boost::mpi::all_gatherv<double>(m_world, valueFunctionPerSim.data(), valueFunctionPerSim.size(), valueFunctionAllSim);
vector<int> simAllProc;
boost::mpi::all_gatherv<int>(m_world, simToProcAndRegion.first.data(), nbSimCurProc, simAllProc);
// update results
int iis = 0;
for (size_t is = 0; is < simAllProc.size(); ++is)
{
for (int iid = 0; iid < m_pOptimize->getSimuFuncSize(); ++iid)
p_phiInOut[iPeriod](iid, simAllProc[is]) = valueFunctionAllSim[iis++];
Map<const ArrayXd > ptStock(&stockAllSim[is * m_pGridFollowing->getDimension()], m_pGridFollowing->getDimension());
p_statevector[simAllProc[is]].setPtStock(ptStock);
p_statevector[simAllProc[is]].setRegime(regimeAllSim[is]);
}
//prepare next period
if (iPeriod < nbPeriodsOfCurrentStep - 1)
{
p_phiInOut[iPeriod + 1] = p_phiInOut[iPeriod];
}
}
}
}
#endif
|