1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifdef USE_MPI
#include <functional>
#include <memory>
#include <boost/mpi.hpp>
#ifdef _OPENMP
#include <omp.h>
#include "StOpt/core/utils/OpenmpException.h"
#endif
#include <Eigen/Dense>
#include "geners/BinaryFileArchive.hh"
#include "geners/Record.hh"
#include "geners/vectorIO.hh"
#include "StOpt/core/parallelism/ParallelComputeGridSplitting.h"
#include "StOpt/core/grids/GridIterator.h"
#include "StOpt/core/utils/eigenGeners.h"
#include "StOpt/regression/ContinuationValue.h"
#include "StOpt/regression/ContinuationValueGeners.h"
#include "StOpt/regression/GridAndRegressedValue.h"
#include "StOpt/regression/GridAndRegressedValueGeners.h"
#include "StOpt/dp/TransitionStepRegressionDPDist.h"
#include "StOpt/core/parallelism/GridReach.h"
using namespace StOpt;
using namespace Eigen;
using namespace std;
TransitionStepRegressionDPDist::TransitionStepRegressionDPDist(const shared_ptr<FullGrid> &p_pGridCurrent,
const shared_ptr<FullGrid> &p_pGridPrevious,
const shared_ptr<OptimizerDPBase > &p_pOptimize,
const boost::mpi::communicator &p_world): TransitionStepBaseDist(p_pGridCurrent, p_pGridPrevious, p_pOptimize, p_world) {}
pair< vector< shared_ptr< ArrayXXd >>, vector< shared_ptr< ArrayXXd > > > TransitionStepRegressionDPDist::oneStep(const vector< shared_ptr< ArrayXXd > > &p_phiIn,
const shared_ptr< BaseRegression> &p_condExp) const
{
// number of regimes at current time
int nbRegimes = m_pOptimize->getNbRegime();
vector< shared_ptr< ArrayXXd > > phiOut(nbRegimes);
int nbControl = m_pOptimize->getNbControl();
vector< shared_ptr< ArrayXXd > > controlOut(nbControl);
// only if the processor is working
vector < shared_ptr< ArrayXXd > > phiInExtended(p_phiIn.size());
// Organize the data splitting : spread the incoming values on an extended grid
for (size_t iReg = 0; iReg < p_phiIn.size() ; ++iReg)
{
// utilitary
ArrayXXd emptyArray;
if (p_phiIn[iReg])
{
phiInExtended[iReg] = make_shared< ArrayXXd >(m_paral->runOneStep(*p_phiIn[iReg])) ;
}
else
phiInExtended[iReg] = make_shared< ArrayXXd >(m_paral->runOneStep(emptyArray)) ;
}
if (m_gridCurrentProc->getNbPoints() > 0)
{
// allocate for solution
for (int iReg = 0; iReg < nbRegimes; ++iReg)
phiOut[iReg] = make_shared< ArrayXXd >(p_condExp->getNbSimul(), m_gridCurrentProc->getNbPoints());
for (int iCont = 0; iCont < nbControl; ++iCont)
controlOut[iCont] = make_shared< ArrayXXd >(p_condExp->getNbSimul(), m_gridCurrentProc->getNbPoints());
// create continuation values on extended grid
vector< ContinuationValue > contVal(p_phiIn.size());
for (size_t iReg = 0; iReg < p_phiIn.size(); ++iReg)
contVal[iReg] = ContinuationValue(m_gridExtendPreviousStep, p_condExp, *phiInExtended[iReg]);
// number of thread
#ifdef _OPENMP
int nbThreads = omp_get_max_threads();
#else
int nbThreads = 1;
#endif
// create iterator on current grid treated for processor
int iThread = 0 ;
#ifdef _OPENMP
OpenmpException excep; // deal with exception in openmp
#pragma omp parallel for private(iThread)
#endif
for (iThread = 0; iThread < nbThreads; ++iThread)
{
#ifdef _OPENMP
excep.run([&]
{
#endif
shared_ptr< GridIterator > iterGridPoint = m_gridCurrentProc->getGridIterator();
// account fo threads
iterGridPoint->jumpToAndInc(0, 1, iThread);
// iterates on points of the grid
while (iterGridPoint->isValid())
{
ArrayXd pointCoord = iterGridPoint->getCoordinate();
// optimize the current point and the set of regimes
pair< ArrayXXd, ArrayXXd> solutionAndControl = static_pointer_cast<OptimizerDPBase>(m_pOptimize)->stepOptimize(m_gridExtendPreviousStep, pointCoord, contVal, phiInExtended);
// copie solution
for (int iReg = 0; iReg < nbRegimes; ++iReg)
(*phiOut[iReg]).col(iterGridPoint->getCount()) = solutionAndControl.first.col(iReg);
for (int iCont = 0; iCont < nbControl; ++iCont)
(*controlOut[iCont]).col(iterGridPoint->getCount()) = solutionAndControl.second.col(iCont);
iterGridPoint->nextInc(nbThreads);
}
#ifdef _OPENMP
});
#endif
}
#ifdef _OPENMP
excep.rethrow();
#endif
}
return make_pair(phiOut, controlOut);
}
void TransitionStepRegressionDPDist::dumpContinuationValues(shared_ptr<gs::BinaryFileArchive> p_ar, const string &p_name, const int &p_iStep,
const vector< shared_ptr< ArrayXXd > > &p_phiInPrev, const vector< shared_ptr< ArrayXXd > > &p_control,
const shared_ptr<BaseRegression> &p_condExp,
const bool &p_bOneFile) const
{
string stepString = boost::lexical_cast<string>(p_iStep) ;
ArrayXi initialDimensionPrev = m_pGridPrevious->getDimensions();
ArrayXi initialDimension = m_pGridCurrent->getDimensions();
if (!p_bOneFile)
{
Array< array<int, 2 >, Dynamic, 1 > gridLocalPrev = m_paral->getPreviousCalculationGrid();
shared_ptr<FullGrid> gridPrevious = m_pGridPrevious->getSubGrid(gridLocalPrev);
Array< array<int, 2 >, Dynamic, 1 > gridLocal = m_paral->getCurrentCalculationGrid();
shared_ptr<FullGrid> gridCurrent = m_pGridCurrent->getSubGrid(gridLocal);
// dump caracteristics of the splitting
// organize the hypercube splitting for parallel
vector<int> vecPrev(initialDimensionPrev.data(), initialDimensionPrev.data() + initialDimensionPrev.size());
*p_ar << gs::Record(vecPrev, "initialSizeOfMeshPrev", stepString.c_str()) ;
vector<int> vecCurrent(initialDimension.data(), initialDimension.data() + initialDimension.size());
*p_ar << gs::Record(vecCurrent, "initialSizeOfMesh", stepString.c_str()) ;
// store regressor
*p_ar << gs::Record(dynamic_cast<const BaseRegression &>(*p_condExp), "regressor", stepString.c_str()) ;
vector<ArrayXXd> regressedValues(p_phiInPrev.size());
if (m_world.rank() < m_paral->getNbProcessorUsedPrev())
{
// regresse the values
for (size_t iReg = 0; iReg < p_phiInPrev.size(); ++iReg)
{
ArrayXXd transposeCont = p_phiInPrev[iReg]->transpose();
regressedValues[iReg] = p_condExp->getCoordBasisFunctionMultiple(transposeCont).transpose();
}
}
*p_ar << gs::Record(regressedValues, (p_name + "Values").c_str(), stepString.c_str()) ;
vector<ArrayXXd> contValues(p_control.size());
if (m_world.rank() < m_paral->getNbProcessorUsed())
{
for (size_t iCont = 0; iCont < p_control.size(); ++iCont)
{
ArrayXXd transposeCont = p_control[iCont]->transpose();
contValues[iCont] = p_condExp->getCoordBasisFunctionMultiple(transposeCont).transpose();
}
}
*p_ar << gs::Record(contValues, (p_name + "Control").c_str(), stepString.c_str()) ;
}
else
{
// utilitary
Array< array<int, 2 >, Dynamic, 1 > gridOnProc0Prev(initialDimensionPrev.size());
for (int id = 0; id < initialDimensionPrev.size(); ++id)
{
gridOnProc0Prev(id)[0] = 0 ;
gridOnProc0Prev(id)[1] = initialDimensionPrev(id) ;
}
ArrayXi splittingRatioPrev = paraOptimalSplitting(initialDimensionPrev, m_pOptimize->getDimensionToSplit(), m_world);
ParallelComputeGridSplitting paralObjectPrev(initialDimensionPrev, splittingRatioPrev, m_world);
vector< GridAndRegressedValue> contVal(p_phiInPrev.size());
for (size_t iReg = 0; iReg < p_phiInPrev.size(); ++iReg)
{
ArrayXXd reconstructedArray ;
if (m_world.rank() < m_paral->getNbProcessorUsedPrev())
reconstructedArray = paralObjectPrev.reconstruct(*p_phiInPrev[iReg], gridOnProc0Prev);
if (m_world.rank() == 0)
contVal[iReg] = GridAndRegressedValue(m_pGridPrevious, p_condExp, reconstructedArray);
}
if (m_world.rank() == 0)
{
*p_ar << gs::Record(contVal, (p_name + "Values").c_str(), stepString.c_str()) ;
}
// now the control
Array< array<int, 2 >, Dynamic, 1 > gridOnProc0(initialDimension.size());
for (int id = 0; id < initialDimension.size(); ++id)
{
gridOnProc0(id)[0] = 0 ;
gridOnProc0(id)[1] = initialDimension(id) ;
}
ArrayXi splittingRatio = paraOptimalSplitting(initialDimension, m_pOptimize->getDimensionToSplit(), m_world);
ParallelComputeGridSplitting paralObject(initialDimension, splittingRatio, m_world);
vector< GridAndRegressedValue > control(p_control.size());
for (size_t iCont = 0; iCont < p_control.size(); ++iCont)
{
ArrayXXd reconstructedArray ;
if (m_world.rank() < m_paral->getNbProcessorUsed())
reconstructedArray = paralObject.reconstruct(*p_control[iCont], gridOnProc0);
if (m_world.rank() == 0)
control[iCont] = GridAndRegressedValue(m_pGridCurrent, p_condExp, reconstructedArray);
}
if (m_world.rank() == 0)
*p_ar << gs::Record(control, (p_name + "Control").c_str(), stepString.c_str()) ;
}
if (m_world.rank() == 0)
p_ar->flush() ; // necessary for python mapping
m_world.barrier() ; // onlyt to prevent the reading in simualtion before the end of writting
}
void TransitionStepRegressionDPDist::dumpBellmanValues(shared_ptr<gs::BinaryFileArchive> p_ar, const string &p_name, const int &p_iStep,
const vector< shared_ptr< ArrayXXd > > &p_phiIn,
const shared_ptr<BaseRegression> &p_condExp,
const bool &p_bOneFile) const
{
string stepString = boost::lexical_cast<string>(p_iStep) ;
ArrayXi initialDimension = m_pGridCurrent->getDimensions();
if (!p_bOneFile)
{
Array< array<int, 2 >, Dynamic, 1 > gridLocal = m_paral->getCurrentCalculationGrid();
shared_ptr<FullGrid> gridCurrent = m_pGridCurrent->getSubGrid(gridLocal);
// dump caracteristics of the splitting
// organize the hypercube splitting for parallel
vector<int> vecCurrent(initialDimension.data(), initialDimension.data() + initialDimension.size());
*p_ar << gs::Record(vecCurrent, "initialSizeOfMesh", stepString.c_str()) ;
// store regressor
*p_ar << gs::Record(dynamic_cast<const BaseRegression &>(*p_condExp), "regressor", stepString.c_str()) ;
vector<ArrayXXd> regressedValues(p_phiIn.size());
if (m_world.rank() < m_paral->getNbProcessorUsed())
{
// regresse the values
for (size_t iReg = 0; iReg < p_phiIn.size(); ++iReg)
{
ArrayXXd transposeCont = p_phiIn[iReg]->transpose();
regressedValues[iReg] = p_condExp->getCoordBasisFunctionMultiple(transposeCont).transpose();
}
}
*p_ar << gs::Record(regressedValues, (p_name + "Values").c_str(), stepString.c_str()) ;
}
else
{
// utilitary
Array< array<int, 2 >, Dynamic, 1 > gridOnProc0(initialDimension.size());
for (int id = 0; id < initialDimension.size(); ++id)
{
gridOnProc0(id)[0] = 0 ;
gridOnProc0(id)[1] = initialDimension(id) ;
}
ArrayXi splittingRatio = paraOptimalSplitting(initialDimension, m_pOptimize->getDimensionToSplit(), m_world);
ParallelComputeGridSplitting paralObject(initialDimension, splittingRatio, m_world);
vector< GridAndRegressedValue> bellVal(p_phiIn.size());
for (size_t iReg = 0; iReg < p_phiIn.size(); ++iReg)
{
ArrayXXd reconstructedArray ;
if (m_world.rank() < m_paral->getNbProcessorUsed())
reconstructedArray = paralObject.reconstruct(*p_phiIn[iReg], gridOnProc0);
if (m_world.rank() == 0)
bellVal[iReg] = GridAndRegressedValue(m_pGridCurrent, p_condExp, reconstructedArray);
}
if (m_world.rank() == 0)
{
*p_ar << gs::Record(bellVal, (p_name + "Values").c_str(), stepString.c_str()) ;
}
}
if (m_world.rank() == 0)
p_ar->flush() ; // necessary for python mapping
m_world.barrier() ; // onlyt to prevent the reading in simualtion before the end of writting
}
#endif
|