1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
// Copyright (C) 2021 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifdef USE_MPI
#include <functional>
#include <memory>
#include <boost/mpi.hpp>
#ifdef _OPENMP
#include <omp.h>
#include "StOpt/core/utils/OpenmpException.h"
#endif
#include <Eigen/Dense>
#include "geners/BinaryFileArchive.hh"
#include "geners/Record.hh"
#include "geners/vectorIO.hh"
#include "StOpt/core/utils/types.h"
#include "StOpt/core/parallelism/ParallelComputeGridSplitting.h"
#include "StOpt/core/grids/FullRegularIntGridIterator.h"
#include "StOpt/core/grids/RegularSpaceIntGrid.h"
#include "StOpt/core/utils/eigenGeners.h"
#include "StOpt/regression/BaseRegressionGeners.h"
#include "StOpt/dp/OptimizerSwitchBase.h"
#include "StOpt/dp/TransitionStepRegressionSwitchDist.h"
using namespace StOpt;
using namespace Eigen;
using namespace std;
TransitionStepRegressionSwitchDist::TransitionStepRegressionSwitchDist(const vector< shared_ptr<RegularSpaceIntGrid> > &p_pGridCurrent,
const vector< shared_ptr<RegularSpaceIntGrid> > &p_pGridPrevious,
const shared_ptr<OptimizerSwitchBase > &p_pOptimize,
const boost::mpi::communicator &p_world): m_pGridCurrent(p_pGridCurrent),
m_pGridPrevious(p_pGridPrevious), m_pOptimize(p_pOptimize), m_paral(p_pGridCurrent.size()), m_gridCurrentProc(p_pGridCurrent.size()), m_gridExtendPreviousStep(p_pGridCurrent.size()), m_world(p_world)
{
vector< Array< bool, Dynamic, 1> > dimToSplit = m_pOptimize->getDimensionToSplit();
for (size_t iReg = 0; iReg < p_pGridCurrent.size(); ++iReg)
{
// initial and previous dimensions
ArrayXi initialDimension = p_pGridCurrent[iReg]->getDimensions();
ArrayXi initialDimensionPrev = p_pGridPrevious[iReg]->getDimensions();
// organize the hypercube splitting for parallel
ArrayXi splittingRatio = paraOptimalSplitting(initialDimension, dimToSplit[iReg], m_world);
ArrayXi splittingRatioPrev = paraOptimalSplitting(initialDimensionPrev, dimToSplit[iReg], m_world);
// cone value
auto fMesh = [iReg, p_pGridCurrent, p_pGridPrevious, p_pOptimize](const SubMeshIntCoord & p_intMesh)->SubMeshIntCoord
{
vector< array<int, 2 > > intMeshUsed(p_intMesh.size());
for (int i = 0; i < p_intMesh.size(); ++i)
{
// from grid starting at 0 to real grid position
intMeshUsed[i][0] = p_intMesh(i)[0] + p_pGridCurrent[iReg]->getLowValueDim(i);
intMeshUsed[i][1] = p_intMesh(i)[1] + p_pGridCurrent[iReg]->getLowValueDim(i) - 1; // last is outside the grid
}
vector< array<int, 2 > > retCone = p_pOptimize->getCone(iReg, intMeshUsed);
// cap to max, min
SubMeshIntCoord ret(retCone.size());
for (int i = 0; i < p_intMesh.size(); ++i)
{
ret(i)[0] = max(retCone[i][0], p_pGridPrevious[iReg]->getLowValueDim(i)) ;
ret(i)[1] = min(retCone[i][1], p_pGridPrevious[iReg]->getMaxValueDim(i));
}
for (int i = 0; i < p_intMesh.size(); ++i)
{
ret(i)[1] += 1; // border should be outside
// from real position to position starting at 0
ret(i)[0] -= p_pGridPrevious[iReg]->getLowValueDim(i);
ret(i)[1] -= p_pGridPrevious[iReg]->getLowValueDim(i);
}
return ret;
};
// ParallelComputeGridsSplitting objects
m_paral[iReg] = make_shared<ParallelComputeGridSplitting>(initialDimension, initialDimensionPrev,
function < SubMeshIntCoord(const SubMeshIntCoord &) >(fMesh),
splittingRatio, splittingRatioPrev, m_world);
// get back grid treated by current processor
SubMeshIntCoord gridLocal = m_paral[iReg]->getCurrentCalculationGrid();
// Construct local sub grid
m_gridCurrentProc[iReg] = m_pGridCurrent[iReg]->getSubGrid(gridLocal);
// only if the grid is not empty
if (m_gridCurrentProc[iReg]->getNbPoints() > 0)
{
// get back grid extended on previous step
SubMeshIntCoord gridLocalExtended = m_paral[iReg]->getExtendedGridProcOldGrid();
m_gridExtendPreviousStep [iReg] = m_pGridPrevious[iReg]->getSubGrid(gridLocalExtended);
}
}
}
vector< shared_ptr< ArrayXXd >> TransitionStepRegressionSwitchDist::oneStep(const vector< shared_ptr< ArrayXXd > > &p_phiIn,
const shared_ptr< BaseRegression> &p_condExp) const
{
// number of regimes at current time
int nbRegimes = m_pOptimize->getNbRegime();
vector< shared_ptr< ArrayXXd > > phiOut(nbRegimes);
// only if the processor is working
vector < shared_ptr< ArrayXXd > > phiInExtended(p_phiIn.size());
// Organize the data splitting : spread the incoming values on an extended grid
for (int iReg = 0; iReg < nbRegimes ; ++iReg)
{
// utilitary
ArrayXXd emptyArray;
if (p_phiIn[iReg])
{
phiInExtended[iReg] = make_shared< ArrayXXd >(m_paral[iReg]->runOneStep(*p_phiIn[iReg])) ;
}
else
phiInExtended[iReg] = make_shared< ArrayXXd >(m_paral[iReg]->runOneStep(emptyArray)) ;
if (m_gridCurrentProc[iReg]->getNbPoints() > 0)
{
// allocate for solution
phiOut[iReg] = make_shared< ArrayXXd >(p_condExp->getNbSimul(), m_gridCurrentProc[iReg]->getNbPoints());
}
}
for (int iReg = 0; iReg < nbRegimes ; ++iReg)
{
if (m_gridCurrentProc[iReg]->getNbPoints() > 0)
{
// number of thread
#ifdef _OPENMP
int nbThreads = omp_get_max_threads();
#else
int nbThreads = 1;
#endif
// create iterator on current grid treated for processor
int iThread = 0 ;
#ifdef _OPENMP
OpenmpException excep; // deal with exception in openmp
#pragma omp parallel for private(iThread)
#endif
for (iThread = 0; iThread < nbThreads; ++iThread)
{
#ifdef _OPENMP
excep.run([&]
{
#endif
FullRegularIntGridIterator iterGridPoint = m_gridCurrentProc[iReg]->getGridIterator();
// account fo threads
iterGridPoint.jumpToAndInc(0, 1, iThread);
// iterates on points of the grid
while (iterGridPoint.isValid())
{
ArrayXi pointCoord = iterGridPoint.getIntCoordinate();
// optimize the current point and the set of regimes
ArrayXd solution = m_pOptimize->stepOptimize(m_gridExtendPreviousStep, iReg, pointCoord, p_condExp, phiInExtended);
// copie solution
(*phiOut[iReg]).col(iterGridPoint.getCount()) = solution;
iterGridPoint.nextInc(nbThreads);
}
#ifdef _OPENMP
});
#endif
}
#ifdef _OPENMP
excep.rethrow();
#endif
}
}
return phiOut;
}
void TransitionStepRegressionSwitchDist::dumpContinuationValues(shared_ptr<gs::BinaryFileArchive> p_ar, const string &p_name, const int &p_iStep,
const vector< shared_ptr< ArrayXXd > > &p_phiInPrev,
const shared_ptr<BaseRegression> &p_condExp) const
{
string stepString = boost::lexical_cast<string>(p_iStep) ;
vector< Array< bool, Dynamic, 1> > dimToSplit = m_pOptimize->getDimensionToSplit();
if (m_world.rank() == 0)
// store regressor
*p_ar << gs::Record(dynamic_cast<const BaseRegression &>(*p_condExp), "regressor", stepString.c_str()) ;
for (size_t iReg = 0; iReg < m_paral.size(); ++iReg)
{
ArrayXi initialDimensionPrev = m_pGridPrevious[iReg]->getDimensions();
ArrayXi initialDimension = m_pGridCurrent[iReg]->getDimensions();
// utilitary
SubMeshIntCoord gridOnProc0Prev(initialDimensionPrev.size());
for (int id = 0; id < initialDimensionPrev.size(); ++id)
{
gridOnProc0Prev(id)[0] = 0 ;
gridOnProc0Prev(id)[1] = initialDimensionPrev(id) ;
}
ArrayXi splittingRatioPrev = paraOptimalSplitting(initialDimensionPrev, dimToSplit[iReg], m_world);
ParallelComputeGridSplitting paralObjectPrev(initialDimensionPrev, splittingRatioPrev, m_world);
ArrayXXd reconstructedArray ;
if (m_world.rank() < m_paral[iReg]->getNbProcessorUsedPrev())
reconstructedArray = paralObjectPrev.reconstruct(*p_phiInPrev[iReg], gridOnProc0Prev);
if (m_world.rank() == 0)
{
ArrayXXd transposeCont = reconstructedArray.transpose();
ArrayXXd basisValues = p_condExp->getCoordBasisFunctionMultiple(transposeCont).transpose();
*p_ar << gs::Record(basisValues, (p_name + "basisValues").c_str(), stepString.c_str()) ;
}
}
if (m_world.rank() == 0)
p_ar->flush() ; // necessary for python mapping
m_world.barrier() ; // onlyt to prevent the reading in simualtion before the end of writting
}
#endif
|