1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
// Copyright (C) 2019 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifdef USE_MPI
#include <functional>
#include <memory>
#include <boost/mpi.hpp>
#ifdef _OPENMP
#include <omp.h>
#include "StOpt/core/utils/OpenmpException.h"
#endif
#include <Eigen/Dense>
#include "geners/BinaryFileArchive.hh"
#include "geners/Record.hh"
#include "geners/vectorIO.hh"
#include "StOpt/core/parallelism/ParallelComputeGridSplitting.h"
#include "StOpt/core/grids/GridIterator.h"
#include "StOpt/core/utils/eigenGeners.h"
#include "StOpt/tree/ContinuationCutsTree.h"
#include "StOpt/tree/ContinuationCutsTreeGeners.h"
#include "StOpt/dp/TransitionStepTreeDPCutDist.h"
#include "StOpt/core/parallelism/GridReach.h"
using namespace StOpt;
using namespace Eigen;
using namespace std;
TransitionStepTreeDPCutDist::TransitionStepTreeDPCutDist(const shared_ptr<FullGrid> &p_pGridCurrent,
const shared_ptr<FullGrid> &p_pGridPrevious,
const shared_ptr<OptimizerDPCutTreeBase > &p_pOptimize,
const boost::mpi::communicator &p_world): TransitionStepBaseDist(p_pGridCurrent, p_pGridPrevious, p_pOptimize, p_world) {}
vector< shared_ptr< ArrayXXd > > TransitionStepTreeDPCutDist::oneStep(const vector< shared_ptr< ArrayXXd > > &p_phiIn,
const shared_ptr< Tree> &p_condExp) const
{
// number of regimes at current time
int nbRegimes = m_pOptimize->getNbRegime();
vector< shared_ptr< ArrayXXd > > phiOut(nbRegimes);
// only if the processor is working
vector < shared_ptr< ArrayXXd > > phiInExtended(p_phiIn.size());
// Organize the data splitting : spread the incoming values on an extended grid
for (size_t iReg = 0; iReg < p_phiIn.size() ; ++iReg)
{
// utilitary
ArrayXXd emptyArray;
if (p_phiIn[iReg])
{
phiInExtended[iReg] = make_shared< ArrayXXd >(m_paral->runOneStep(*p_phiIn[iReg])) ;
}
else
phiInExtended[iReg] = make_shared< ArrayXXd >(m_paral->runOneStep(emptyArray)) ;
}
if (m_gridCurrentProc->getNbPoints() > 0)
{
// allocate for solution
for (int iReg = 0; iReg < nbRegimes; ++iReg)
phiOut[iReg] = make_shared< ArrayXXd >(p_condExp->getNbNodes() * (m_pGridCurrent->getDimension() + 1), m_gridCurrentProc->getNbPoints());
// create continuation values on extended grid
vector< ContinuationCutsTree > contVal(p_phiIn.size());
for (size_t iReg = 0; iReg < p_phiIn.size(); ++iReg)
contVal[iReg] = ContinuationCutsTree(m_gridExtendPreviousStep, p_condExp, *phiInExtended[iReg]);
// number of thread
#ifdef _OPENMP
int nbThreads = omp_get_max_threads();
#else
int nbThreads = 1;
#endif
// create iterator on current grid treated for processor
int iThread = 0 ;
#ifdef _OPENMP
OpenmpException excep; // deal with exception in openmp
#pragma omp parallel for private(iThread)
#endif
for (iThread = 0; iThread < nbThreads; ++iThread)
{
#ifdef _OPENMP
excep.run([&]
{
#endif
shared_ptr< GridIterator > iterGridPoint = m_gridCurrentProc->getGridIterator();
// account fo threads
iterGridPoint->jumpToAndInc(0, 1, iThread);
// iterates on points of the grid
while (iterGridPoint->isValid())
{
ArrayXd pointCoord = iterGridPoint->getCoordinate();
// optimize the current point and the set of regimes -> get back cuts per simulation and stock point
ArrayXXd solution = static_pointer_cast<OptimizerDPCutTreeBase>(m_pOptimize)->stepOptimize(m_gridExtendPreviousStep, pointCoord, contVal);
// copie solution
for (int iReg = 0; iReg < nbRegimes; ++iReg)
(*phiOut[iReg]).col(iterGridPoint->getCount()) = solution.col(iReg);
iterGridPoint->nextInc(nbThreads);
}
#ifdef _OPENMP
});
#endif
}
#ifdef _OPENMP
excep.rethrow();
#endif
}
return phiOut;
}
void TransitionStepTreeDPCutDist::dumpContinuationCutsValues(shared_ptr<gs::BinaryFileArchive> p_ar, const string &p_name, const int &p_iStep,
const vector< shared_ptr< ArrayXXd > > &p_phiInPrev,
const shared_ptr< Tree> &p_condExp,
const bool &p_bOneFile) const
{
string stepString = boost::lexical_cast<string>(p_iStep) ;
ArrayXi initialDimensionPrev = m_pGridPrevious->getDimensions();
ArrayXi initialDimension = m_pGridCurrent->getDimensions();
// calculate number of nodes in trre
int nbNodes = p_phiInPrev[0]->rows() / (m_pGridCurrent->getDimension() + 1);
if (!p_bOneFile)
{
Array< array<int, 2 >, Dynamic, 1 > gridLocalPrev = m_paral->getPreviousCalculationGrid();
shared_ptr<FullGrid> gridPrevious = m_pGridPrevious->getSubGrid(gridLocalPrev);
Array< array<int, 2 >, Dynamic, 1 > gridLocal = m_paral->getCurrentCalculationGrid();
shared_ptr<FullGrid> gridCurrent = m_pGridCurrent->getSubGrid(gridLocal);
// dump caracteristics of the splitting
// organize the hypercube splitting for parallel
vector<int> vecPrev(initialDimensionPrev.data(), initialDimensionPrev.data() + initialDimensionPrev.size());
*p_ar << gs::Record(vecPrev, "initialSizeOfMeshPrev", stepString.c_str()) ;
vector<int> vecCurrent(initialDimension.data(), initialDimension.data() + initialDimension.size());
*p_ar << gs::Record(vecCurrent, "initialSizeOfMesh", stepString.c_str()) ;
int nbCuts = m_pGridCurrent->getDimension() + 1;
vector< ArrayXXd > expValues(nbCuts * p_phiInPrev.size());
if (m_world.rank() < m_paral->getNbProcessorUsedPrev())
{
// regresse the values
for (size_t iReg = 0; iReg < p_phiInPrev.size(); ++iReg)
{
for (int ic = 0; ic < nbCuts; ++ic)
{
// size ( nbStock, (nb simul * nbCuts)
ArrayXXd transposeCont = p_phiInPrev[iReg]->block(ic * nbNodes, 0, nbNodes, p_phiInPrev[iReg]->cols()). transpose();
expValues[ic + nbCuts * iReg] = p_condExp->expCondMultiple(transposeCont).transpose();
}
}
// for cut zero add stock components
shared_ptr<GridIterator> iterRegGrid = gridPrevious->getGridIterator();
while (iterRegGrid->isValid())
{
// coordinates
ArrayXd pointCoordReg = iterRegGrid->getCoordinate();
// point number
int ipoint = iterRegGrid->getCount();
for (size_t iReg = 0; iReg < p_phiInPrev.size(); ++iReg)
{
for (int id = 0 ; id < pointCoordReg.size(); ++id)
expValues[nbCuts * iReg].col(ipoint) -= expValues[id + 1 + nbCuts * iReg].col(ipoint) * pointCoordReg(id);
}
iterRegGrid->next();
}
}
*p_ar << gs::Record(expValues, (p_name + "Values").c_str(), stepString.c_str()) ;
}
else
{
// utilitary
Array< array<int, 2 >, Dynamic, 1 > gridOnProc0Prev(initialDimensionPrev.size());
for (int id = 0; id < initialDimensionPrev.size(); ++id)
{
gridOnProc0Prev(id)[0] = 0 ;
gridOnProc0Prev(id)[1] = initialDimensionPrev(id) ;
}
ArrayXi splittingRatioPrev = paraOptimalSplitting(initialDimensionPrev, m_pOptimize->getDimensionToSplit(), m_world);
ParallelComputeGridSplitting paralObjectPrev(initialDimensionPrev, splittingRatioPrev, m_world);
vector< ContinuationCutsTree> contVal(p_phiInPrev.size());
for (size_t iReg = 0; iReg < p_phiInPrev.size(); ++iReg)
{
ArrayXXd reconstructedArray ;
if (m_world.rank() < m_paral->getNbProcessorUsedPrev())
reconstructedArray = paralObjectPrev.reconstruct(*p_phiInPrev[iReg], gridOnProc0Prev);
if (m_world.rank() == 0)
contVal[iReg] = ContinuationCutsTree(m_pGridPrevious, p_condExp, reconstructedArray);
}
if (m_world.rank() == 0)
*p_ar << gs::Record(contVal, (p_name + "Values").c_str(), stepString.c_str()) ;
}
if (m_world.rank() == 0)
p_ar->flush() ; // necessary for python mapping
m_world.barrier() ; // onlyt to prevent the reading in simualtion before the end of writting
}
#endif
|