1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
// Copyright (C) 2018 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <Eigen/SVD>
#include <Eigen/Cholesky>
#include "StOpt/regression/LaplacianConstKernelRegression.h"
#include "StOpt/regression/nDDominanceKernel.h"
using namespace std ;
using namespace Eigen ;
namespace StOpt
{
LaplacianConstKernelRegression::LaplacianConstKernelRegression(const bool &p_bZeroDate,
const ArrayXXd &p_particles,
const ArrayXd &p_h):
BaseRegression(p_bZeroDate, p_particles, false), m_h(p_h), m_tree(p_particles)
{
}
LaplacianConstKernelRegression::LaplacianConstKernelRegression(const ArrayXd &p_h):
BaseRegression(false), m_h(p_h)
{
}
LaplacianConstKernelRegression::LaplacianConstKernelRegression(const bool &p_bZeroDate,
const ArrayXXd &p_particles):
BaseRegression(p_bZeroDate, p_particles, false), m_tree(p_particles)
{
}
void LaplacianConstKernelRegression::updateSimulations(const bool &p_bZeroDate, const ArrayXXd &p_particles)
{
BaseRegression::updateSimulationsBase(p_bZeroDate, p_particles);
m_tree = KDTree(p_particles);
}
ArrayXXd LaplacianConstKernelRegression::regressFunction(const ArrayXXd &p_fToRegress) const
{
// dimension
int nD = m_particles.rows();
// creation of the 2^d terms
int nbSum = pow(2, nD);
vector< shared_ptr<ArrayXXd> > vecToAdd(nbSum);
// calculate exp values
Eigen::ArrayXi iCoord(nD) ;
for (int i = 0; i < nbSum; ++i)
{
int ires = i;
for (int id = nD - 1 ; id >= 0 ; --id)
{
unsigned int idec = (ires >> id) ;
iCoord(id) = -(2 * idec - 1);
ires -= (idec << id);
}
vecToAdd[i] = make_shared<ArrayXXd>(1 + p_fToRegress.rows(), m_particles.cols());
for (int is = 0; is < m_particles.cols(); ++is)
{
double ssum = 0;
for (int id = 0; id < nD; ++id)
ssum += iCoord(id) * m_particles(id, is) / m_h(id);
double expSum = exp(ssum);
for (int ifunc = 0; ifunc < p_fToRegress.rows(); ++ifunc)
(*vecToAdd[i])(ifunc, is) = expSum * p_fToRegress(ifunc, is);
(*vecToAdd[i])(p_fToRegress.rows(), is) = expSum;
}
}
vector< shared_ptr<ArrayXXd> > fDomin(nbSum);
// kernel resolution
nDDominanceKernel(m_particles, vecToAdd, fDomin);
// reconstruction of the 2^d terms
ArrayXXd reconsY(p_fToRegress.rows(), p_fToRegress.cols());
ArrayXd recons(p_fToRegress.cols());
for (int is = 0; is < m_particles.cols(); ++is)
{
for (int ifunc = 0; ifunc < p_fToRegress.rows(); ++ifunc)
reconsY(ifunc, is) = p_fToRegress(ifunc, is);
recons(is) = 1;
for (int id = 0; id < nbSum; ++id)
{
for (int ifunc = 0 ; ifunc < p_fToRegress.rows(); ++ifunc)
reconsY(ifunc, is) += (*fDomin[id])(ifunc, is) * (*vecToAdd[nbSum - 1 - id])(p_fToRegress.rows(), is);
recons(is) += (*fDomin[id])(p_fToRegress.rows(), is) * (*vecToAdd[nbSum - 1 - id])(p_fToRegress.rows(), is);
}
}
for (int ifunc = 0 ; ifunc < p_fToRegress.rows(); ++ifunc)
for (int is = 0; is < m_particles.cols(); ++is)
reconsY(ifunc, is) /= recons(is);
return reconsY;
}
ArrayXd LaplacianConstKernelRegression::getCoordBasisFunction(const ArrayXd &p_fToRegress) const
{
if (!BaseRegression::m_bZeroDate)
{
const ArrayXXd fToRegress = Map<const ArrayXXd>(p_fToRegress.data(), 1, p_fToRegress.size()) ;
ArrayXXd regressed = regressFunction(fToRegress);
ArrayXd toReturn = Map<ArrayXd>(regressed.data(), regressed.size());
return toReturn;
}
else
{
ArrayXd retAverage(1);
retAverage(0) = p_fToRegress.mean();
return retAverage;
}
}
ArrayXXd LaplacianConstKernelRegression::getCoordBasisFunctionMultiple(const ArrayXXd &p_fToRegress) const
{
if (!BaseRegression::m_bZeroDate)
{
return regressFunction(p_fToRegress);
}
else
{
ArrayXXd retAverage(p_fToRegress.rows(), 1);
for (int nsm = 0; nsm < p_fToRegress.rows(); ++nsm)
retAverage.row(nsm).setConstant(p_fToRegress.row(nsm).mean());
return retAverage;
}
}
ArrayXd LaplacianConstKernelRegression::getAllSimulations(const ArrayXd &p_fToRegress) const
{
if (!BaseRegression::m_bZeroDate)
{
const ArrayXXd fToRegress = Map<const ArrayXXd>(p_fToRegress.data(), 1, p_fToRegress.size()) ;
ArrayXXd regressed = regressFunction(fToRegress);
ArrayXd toReturn = Map<ArrayXd>(regressed.data(), regressed.size());
return toReturn;
}
else
{
return ArrayXd::Constant(p_fToRegress.size(), p_fToRegress.mean());
}
}
ArrayXXd LaplacianConstKernelRegression::getAllSimulationsMultiple(const ArrayXXd &p_fToRegress) const
{
if (!BaseRegression::m_bZeroDate)
{
return regressFunction(p_fToRegress);
}
else
{
ArrayXXd ret(p_fToRegress.rows(), p_fToRegress.cols());
for (int ism = 0; ism < p_fToRegress.rows(); ++ism)
ret.row(ism).setConstant(p_fToRegress.row(ism).mean());
return ret;
}
}
ArrayXd LaplacianConstKernelRegression::reconstruction(const ArrayXd &p_basisCoefficients) const
{
if (!BaseRegression::m_bZeroDate)
return p_basisCoefficients; // basis function are here regressed values !
else
{
return ArrayXd::Constant(m_particles.cols(), p_basisCoefficients(0));
}
}
ArrayXXd LaplacianConstKernelRegression::reconstructionMultiple(const ArrayXXd &p_basisCoefficients) const
{
if (!BaseRegression::m_bZeroDate)
{
return p_basisCoefficients; // basis function are here regressed values !
}
else
{
ArrayXXd retValue(p_basisCoefficients.rows(), m_particles.cols());
for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
retValue.row(nsm).setConstant(p_basisCoefficients(nsm, 0));
return retValue ;
}
}
double LaplacianConstKernelRegression::reconstructionASim(const int &p_isim, const ArrayXd &p_basisCoefficients) const
{
double ret ;
if (!BaseRegression::m_bZeroDate)
{
ret = p_basisCoefficients(p_isim);
}
else
{
ret = p_basisCoefficients(0);
}
return ret ;
}
double LaplacianConstKernelRegression::getValue(const ArrayXd &p_coordinates,
const ArrayXd &p_coordBasisFunction) const
{
double ret ;
if (!BaseRegression::m_bZeroDate)
{
// Use KDTree to find nearest point close to a given one and regress the associated
// regressed value
return p_coordBasisFunction(m_tree.nearestIndex(p_coordinates));
}
else
ret = p_coordBasisFunction(0);
return ret ;
}
double LaplacianConstKernelRegression::getAValue(const ArrayXd &p_coordinates, const ArrayXd &p_ptOfStock,
const vector< shared_ptr<InterpolatorSpectral> > &p_interpFuncBasis) const
{
if (!BaseRegression::m_bZeroDate)
{
return p_interpFuncBasis[m_tree.nearestIndex(p_coordinates)]->apply(p_ptOfStock);
}
else
{
return p_interpFuncBasis[0]->apply(p_ptOfStock);
}
}
}
|