1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
// Copyright (C) 2018 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <Eigen/SVD>
#include <Eigen/Cholesky>
#include "StOpt/regression/LaplacianLinearKernelRegression.h"
#include "StOpt/regression/nDDominanceKernel.h"
using namespace std ;
using namespace Eigen ;
namespace StOpt
{
LaplacianLinearKernelRegression::LaplacianLinearKernelRegression(const bool &p_bZeroDate,
const ArrayXXd &p_particles,
const ArrayXd &p_h):
BaseRegression(p_bZeroDate, p_particles, false), m_h(p_h), m_tree(p_particles)
{
}
LaplacianLinearKernelRegression::LaplacianLinearKernelRegression(const ArrayXd &p_h):
BaseRegression(false), m_h(p_h)
{
}
LaplacianLinearKernelRegression::LaplacianLinearKernelRegression(const bool &p_bZeroDate,
const ArrayXXd &p_particles):
BaseRegression(p_bZeroDate, p_particles, false), m_tree(p_particles)
{
}
void LaplacianLinearKernelRegression::updateSimulations(const bool &p_bZeroDate, const ArrayXXd &p_particles)
{
BaseRegression::updateSimulationsBase(p_bZeroDate, p_particles);
m_tree = KDTree(p_particles);
}
ArrayXXd LaplacianLinearKernelRegression::regressFunction(const ArrayXXd &p_fToRegress) const
{
// dimension
int nD = m_particles.rows();
// number of functions to calculate for regressions
int nbFuncReg = (nD + 1) * (nD + 2) / 2;
int nbFuncSecMem = (nD + 1) * p_fToRegress.rows() ;
// creation of the 2^d terms
int nbSum = pow(2, nD);
vector< shared_ptr<ArrayXXd> > vecToAdd(nbSum);
// calculate exp values
Eigen::ArrayXi iCoord(nD) ;
for (int i = 0; i < nbSum; ++i)
{
int ires = i;
for (int id = nD - 1 ; id >= 0 ; --id)
{
unsigned int idec = (ires >> id) ;
iCoord(id) = -(2 * idec - 1);
ires -= (idec << id);
}
vecToAdd[i] = make_shared<ArrayXXd>(nbFuncReg + nbFuncSecMem, m_particles.cols());
for (int is = 0; is < m_particles.cols(); ++is)
{
double ssum = 0;
for (int id = 0; id < nD; ++id)
ssum += iCoord(id) * m_particles(id, is) / m_h(id);
double expSum = exp(ssum);
int iloc = 0;
// lower triangular matrix
(*vecToAdd[i])(iloc++, is) = expSum;
for (int id = 0; id < nD; ++id)
{
(*vecToAdd[i])(iloc++, is) = expSum * m_particles(id, is);
for (int idd = 0; idd <= id; ++idd)
(*vecToAdd[i])(iloc++, is) = expSum * m_particles(id, is) * m_particles(idd, is) ;
}
for (int ifunc = 0; ifunc < p_fToRegress.rows(); ++ifunc)
{
(*vecToAdd[i])(iloc++, is) = expSum * p_fToRegress(ifunc, is);
for (int id = 0; id < nD ; ++id)
(*vecToAdd[i])(iloc++, is) = expSum * p_fToRegress(ifunc, is) * m_particles(id, is) ;
}
}
}
vector< shared_ptr<ArrayXXd> > fDomin(nbSum);
// kernel resolution
nDDominanceKernel(m_particles, vecToAdd, fDomin);
// reconstruction of the 2^d terms for each matrix term
ArrayXd forMatrix(nbFuncReg);
ArrayXd secMem(nbFuncSecMem);
MatrixXd matA(1 + nD, 1 + nD);
VectorXd vecB(1 + nD);
ArrayXXd ret(p_fToRegress.rows(), p_fToRegress.cols());
for (int is = 0; is < m_particles.cols(); ++is)
{
// calculate matrix Coeff
int iPosLoc = 0;
forMatrix(iPosLoc) = 1.;
for (int iSum = 0; iSum < nbSum; ++iSum)
{
forMatrix(iPosLoc) += (*fDomin[iSum])(0, is) * (*vecToAdd[nbSum - 1 - iSum])(0, is);
}
iPosLoc += 1;
for (int id = 0; id < nD; ++id)
{
forMatrix(iPosLoc) = m_particles(id, is);
for (int iSum = 0; iSum < nbSum; ++iSum)
forMatrix(iPosLoc) += (*fDomin[iSum])(iPosLoc, is) * (*vecToAdd[nbSum - 1 - iSum])(0, is);
iPosLoc += 1;
for (int idd = 0; idd <= id; ++idd)
{
forMatrix(iPosLoc) = m_particles(id, is) * m_particles(idd, is) ;
for (int iSum = 0; iSum < nbSum; ++iSum)
forMatrix(iPosLoc) += (*fDomin[iSum])(iPosLoc, is) * (*vecToAdd[nbSum - 1 - iSum])(0, is);
iPosLoc += 1;
}
}
// create second member
int iSecMem = 0 ;
for (int ifunc = 0 ; ifunc < p_fToRegress.rows(); ++ifunc)
{
secMem(iSecMem) = p_fToRegress(ifunc, is);
for (int iSum = 0; iSum < nbSum; ++iSum)
{
secMem(iSecMem) += (*fDomin[iSum])(nbFuncReg + iSecMem, is) * (*vecToAdd[nbSum - 1 - iSum])(0, is);
}
iSecMem += 1;
for (int id = 0; id < nD; ++id)
{
secMem(iSecMem) = p_fToRegress(ifunc, is) * m_particles(id, is) ;
for (int iSum = 0; iSum < nbSum; ++iSum)
{
secMem(iSecMem) += (*fDomin[iSum])(nbFuncReg + iSecMem, is) * (*vecToAdd[nbSum - 1 - iSum])(0, is);
}
iSecMem += 1;
}
}
// create regression matrix
int iloc = 0;
for (int id = 0; id <= nD; ++id)
for (int idd = 0; idd <= id; ++idd)
matA(id, idd) = forMatrix(iloc++);
for (int id = 0; id <= nD; ++id)
for (int idd = id + 1; idd <= nD; ++idd)
matA(id, idd) = matA(idd, id);
// second member and inverse
int iloc1 = 0;
// inverse
LLT<MatrixXd> lltA(matA);
for (int ifunc = 0 ; ifunc < p_fToRegress.rows(); ++ifunc)
{
for (int id = 0; id <= nD; ++id)
vecB(id) = secMem(iloc1++);
VectorXd coeff = lltA.solve(vecB);
ret(ifunc, is) = coeff(0);
for (int id = 0; id < nD; ++id)
ret(ifunc, is) += coeff(id + 1) * m_particles(id, is);
}
}
return ret;
}
ArrayXd LaplacianLinearKernelRegression::getCoordBasisFunction(const ArrayXd &p_fToRegress) const
{
if (!BaseRegression::m_bZeroDate)
{
const ArrayXXd fToRegress = Map<const ArrayXXd>(p_fToRegress.data(), 1, p_fToRegress.size()) ;
ArrayXXd regressed = regressFunction(fToRegress);
ArrayXd toReturn = Map<ArrayXd>(regressed.data(), regressed.size());
return toReturn;
}
else
{
ArrayXd retAverage(1);
retAverage(0) = p_fToRegress.mean();
return retAverage;
}
}
ArrayXXd LaplacianLinearKernelRegression::getCoordBasisFunctionMultiple(const ArrayXXd &p_fToRegress) const
{
if (!BaseRegression::m_bZeroDate)
{
return regressFunction(p_fToRegress);
}
else
{
ArrayXXd retAverage(p_fToRegress.rows(), 1);
for (int nsm = 0; nsm < p_fToRegress.rows(); ++nsm)
retAverage.row(nsm).setConstant(p_fToRegress.row(nsm).mean());
return retAverage;
}
}
ArrayXd LaplacianLinearKernelRegression::getAllSimulations(const ArrayXd &p_fToRegress) const
{
if (!BaseRegression::m_bZeroDate)
{
const ArrayXXd fToRegress = Map<const ArrayXXd>(p_fToRegress.data(), 1, p_fToRegress.size()) ;
ArrayXXd regressed = regressFunction(fToRegress);
ArrayXd toReturn = Map<ArrayXd>(regressed.data(), regressed.size());
return toReturn;
}
else
{
return ArrayXd::Constant(p_fToRegress.size(), p_fToRegress.mean());
}
}
ArrayXXd LaplacianLinearKernelRegression::getAllSimulationsMultiple(const ArrayXXd &p_fToRegress) const
{
if (!BaseRegression::m_bZeroDate)
{
return regressFunction(p_fToRegress);
}
else
{
ArrayXXd ret(p_fToRegress.rows(), p_fToRegress.cols());
for (int ism = 0; ism < p_fToRegress.rows(); ++ism)
ret.row(ism).setConstant(p_fToRegress.row(ism).mean());
return ret;
}
}
ArrayXd LaplacianLinearKernelRegression::reconstruction(const ArrayXd &p_basisCoefficients) const
{
if (!BaseRegression::m_bZeroDate)
return p_basisCoefficients; // basis function are here regressed values !
else
{
return ArrayXd::Constant(m_particles.cols(), p_basisCoefficients(0));
}
}
ArrayXXd LaplacianLinearKernelRegression::reconstructionMultiple(const ArrayXXd &p_basisCoefficients) const
{
if (!BaseRegression::m_bZeroDate)
{
return p_basisCoefficients; // basis function are here regressed values !
}
else
{
ArrayXXd retValue(p_basisCoefficients.rows(), m_particles.cols());
for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
retValue.row(nsm).setConstant(p_basisCoefficients(nsm, 0));
return retValue ;
}
}
double LaplacianLinearKernelRegression::reconstructionASim(const int &p_isim, const ArrayXd &p_basisCoefficients) const
{
double ret ;
if (!BaseRegression::m_bZeroDate)
{
ret = p_basisCoefficients(p_isim);
}
else
{
ret = p_basisCoefficients(0);
}
return ret ;
}
double LaplacianLinearKernelRegression::getValue(const ArrayXd &p_coordinates,
const ArrayXd &p_coordBasisFunction) const
{
double ret ;
if (!BaseRegression::m_bZeroDate)
{
// Use KDTree to find nearest point close to a given one and regress the associated
// regressed value
return p_coordBasisFunction(m_tree.nearestIndex(p_coordinates));
}
else
ret = p_coordBasisFunction(0);
return ret ;
}
double LaplacianLinearKernelRegression::getAValue(const ArrayXd &p_coordinates, const ArrayXd &p_ptOfStock,
const vector< shared_ptr<InterpolatorSpectral> > &p_interpFuncBasis) const
{
if (!BaseRegression::m_bZeroDate)
{
return p_interpFuncBasis[m_tree.nearestIndex(p_coordinates)]->apply(p_ptOfStock);
}
else
{
return p_interpFuncBasis[0]->apply(p_ptOfStock);
}
}
}
|