1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <vector>
#include <memory>
#include <iostream>
#include <Eigen/Dense>
#include "StOpt/regression/LocalConstRegression.h"
#include "StOpt/regression/localConstMatrixOperation.h"
#include "StOpt/core/grids/InterpolatorSpectral.h"
using namespace std;
using namespace Eigen;
namespace StOpt
{
LocalConstRegression::LocalConstRegression(const ArrayXi &p_nbMesh, bool p_bRotationAndRecale): LocalRegression(p_nbMesh, p_bRotationAndRecale) {}
LocalConstRegression::LocalConstRegression(const bool &p_bZeroDate,
const ArrayXXd &p_particles,
const ArrayXi &p_nbMesh,
bool p_bRotationAndRecale) : LocalRegression(p_bZeroDate, p_particles, p_nbMesh, p_bRotationAndRecale)
{
if ((!m_bZeroDate) && (p_nbMesh.size() != 0))
{
// regression matrix
m_matReg = localConstMatrixCalculation(m_simToCell, m_mesh.cols());
}
}
LocalConstRegression:: LocalConstRegression(const LocalConstRegression &p_object): LocalRegression(p_object),
m_matReg(p_object.getMatReg())
{}
void LocalConstRegression::updateSimulations(const bool &p_bZeroDate, const ArrayXXd &p_particles)
{
BaseRegression::updateSimulationsBase(p_bZeroDate, p_particles);
m_simToCell.resize(p_particles.cols());
if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
{
if (p_particles.rows() != m_nbMesh.size())
{
cout << " Dimension nd of particles of size (nd, nbSimu) is " << p_particles.rows();
cout << " and should be equal to the size of the array describing the mesh refinement " << m_nbMesh.transpose() << endl ;
abort();
}
meshCalculationLocalRegression(m_particles, m_nbMesh, m_simToCell, m_mesh, m_mesh1D);
// regression matrix
m_matReg = localConstMatrixCalculation(m_simToCell, m_mesh.cols());
}
else
{
m_simToCell.setConstant(0);
}
}
ArrayXd LocalConstRegression::getCoordBasisFunction(const ArrayXd &p_fToRegress) const
{
if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
{
Map<const ArrayXXd> fToRegress2D(p_fToRegress.data(), 1, p_fToRegress.size());
ArrayXXd secMember2D = localConstSecondMemberCalculation(m_simToCell, m_mesh.cols(), fToRegress2D);
// output
Map<const ArrayXd > secMember(secMember2D.data(), secMember2D.size());
ArrayXd ret = secMember / m_matReg;
return ret;
}
else
{
ArrayXd retAverage(1);
retAverage(0) = p_fToRegress.mean();
return retAverage;
}
}
ArrayXXd LocalConstRegression::getCoordBasisFunctionMultiple(const ArrayXXd &p_fToRegress) const
{
if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
{
ArrayXXd secMember = localConstSecondMemberCalculation(m_simToCell, m_mesh.cols(), p_fToRegress);
ArrayXXd regFunc(p_fToRegress.rows(), secMember.cols());
for (int im = 0; im < m_matReg.size(); ++im)
for (int nsm = 0; nsm < p_fToRegress.rows(); ++nsm)
regFunc(nsm, im) = secMember(nsm, im) / m_matReg(im);;
return regFunc;
}
else
{
ArrayXXd retAverage(p_fToRegress.rows(), 1);
for (int nsm = 0; nsm < p_fToRegress.rows(); ++nsm)
retAverage.row(nsm).setConstant(p_fToRegress.row(nsm).mean());
return retAverage;
}
}
ArrayXd LocalConstRegression::reconstruction(const ArrayXd &p_basisCoefficients) const
{
if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
{
Map<const ArrayXXd> BasisCoefficients(p_basisCoefficients.data(), 1, p_basisCoefficients.size());
return localConstReconstruction(m_simToCell, BasisCoefficients).row(0);
}
else
return ArrayXd::Constant(m_simToCell.size(), p_basisCoefficients(0));
}
ArrayXXd LocalConstRegression::reconstructionMultiple(const ArrayXXd &p_basisCoefficients) const
{
if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
{
return localConstReconstruction(m_simToCell, p_basisCoefficients);
}
else
{
ArrayXXd retValue(p_basisCoefficients.rows(), m_simToCell.size());
for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
retValue.row(nsm).setConstant(p_basisCoefficients(nsm, 0));
return retValue ;
}
}
double LocalConstRegression::reconstructionASim(const int &p_isim, const ArrayXd &p_basisCoefficients) const
{
if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
{
return p_basisCoefficients(m_simToCell(p_isim)) ;
}
else
{
return p_basisCoefficients(0);
}
}
ArrayXd LocalConstRegression::getAllSimulations(const ArrayXd &p_fToRegress) const
{
if ((m_bZeroDate) || (m_nbMesh.size() == 0))
return ArrayXd::Constant(p_fToRegress.size(), p_fToRegress.mean());
Map<const ArrayXXd> fToRegress2D(p_fToRegress.data(), 1, p_fToRegress.size());
ArrayXXd BasisCoefficients = getCoordBasisFunctionMultiple(fToRegress2D);
ArrayXXd condEspectationValues = localConstReconstruction(m_simToCell, BasisCoefficients);
return condEspectationValues.row(0);
}
ArrayXXd LocalConstRegression::getAllSimulationsMultiple(const ArrayXXd &p_fToRegress) const
{
if ((m_bZeroDate) || (m_nbMesh.size() == 0))
{
ArrayXXd ret(p_fToRegress.rows(), p_fToRegress.cols());
for (int ism = 0; ism < p_fToRegress.rows(); ++ism)
ret.row(ism).setConstant(p_fToRegress.row(ism).mean());
return ret;
}
ArrayXXd BasisCoefficients = getCoordBasisFunctionMultiple(p_fToRegress);
return localConstReconstruction(m_simToCell, BasisCoefficients);
}
double LocalConstRegression::getValue(const ArrayXd &p_coordinates, const ArrayXd &p_coordBasisFunction) const
{
if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
{
// rotation
VectorXd x = m_svdMatrix * ((p_coordinates - m_meanX) / m_etypX).matrix();
Map<const ArrayXXd> coordBasisFunction2D(p_coordBasisFunction.data(), 1, p_coordBasisFunction.size());
return localConstReconstructionOnePoint(x.array(), m_mesh1D, coordBasisFunction2D)(0);
}
else
{
return p_coordBasisFunction(0);
}
}
double LocalConstRegression::getAValue(const ArrayXd &p_coordinates, const ArrayXd &p_ptOfStock,
const vector< shared_ptr<InterpolatorSpectral> > &p_interpFuncBasis) const
{
if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
{
// rotation
VectorXd x = m_svdMatrix * ((p_coordinates - m_meanX) / m_etypX).matrix();
return localConstReconsOnePointSimStock(x.array(), p_ptOfStock, p_interpFuncBasis, m_mesh1D);
}
else
{
return p_interpFuncBasis[0]->apply(p_ptOfStock);
}
}
ArrayXd LocalConstRegression::getCoordBasisFunctionOneCell(const int &p_iCell, const ArrayXd &p_fToRegress) const
{
ArrayXd retAverage(1);
if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
{
retAverage(0) = 0. ;
for (size_t i = 0; i < m_simulBelongingToCell[p_iCell]->size(); ++i)
retAverage(0) += p_fToRegress((*m_simulBelongingToCell[p_iCell])[i]);
retAverage(0) /= m_simulBelongingToCell[p_iCell]->size();
}
else
{
retAverage(0) = p_fToRegress.mean();
}
return retAverage;
}
ArrayXXd LocalConstRegression::getCoordBasisFunctionMultipleOneCell(const int &p_iCell, const ArrayXXd &p_fToRegress) const
{
ArrayXXd retAverage = ArrayXXd::Zero(p_fToRegress.rows(), 1);
if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
{
for (size_t i = 0; i < m_simulBelongingToCell[p_iCell]->size(); ++i)
for (int j = 0; j < p_fToRegress.rows(); ++j)
retAverage(j, 0) += p_fToRegress(j, (*m_simulBelongingToCell[p_iCell])[i]);
retAverage /= m_simulBelongingToCell[p_iCell]->size();
}
else
{
for (int nsm = 0; nsm < p_fToRegress.rows(); ++nsm)
retAverage.row(nsm).setConstant(p_fToRegress.row(nsm).mean());
}
return retAverage;
}
Eigen::ArrayXd LocalConstRegression::getValuesOneCell(const Eigen::ArrayXd &, const int &p_cell, const Eigen::ArrayXXd &p_foncBasisCoef) const
{
if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
{
return p_foncBasisCoef.col(p_cell);
}
else
return p_foncBasisCoef.col(0);
}
}
|