File: LocalConstRegression.cpp

package info (click to toggle)
stopt 5.12%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,860 kB
  • sloc: cpp: 70,456; python: 5,950; makefile: 72; sh: 57
file content (240 lines) | stat: -rw-r--r-- 8,398 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <vector>
#include <memory>
#include <iostream>
#include <Eigen/Dense>
#include "StOpt/regression/LocalConstRegression.h"
#include "StOpt/regression/localConstMatrixOperation.h"
#include "StOpt/core/grids/InterpolatorSpectral.h"

using namespace std;
using namespace Eigen;

namespace StOpt
{

LocalConstRegression::LocalConstRegression(const ArrayXi &p_nbMesh, bool  p_bRotationAndRecale): LocalRegression(p_nbMesh, p_bRotationAndRecale) {}

LocalConstRegression::LocalConstRegression(const bool &p_bZeroDate,
        const ArrayXXd  &p_particles,
        const ArrayXi &p_nbMesh,
        bool  p_bRotationAndRecale) : LocalRegression(p_bZeroDate, p_particles, p_nbMesh, p_bRotationAndRecale)
{
    if ((!m_bZeroDate) && (p_nbMesh.size() != 0))
    {
        // regression matrix
        m_matReg = localConstMatrixCalculation(m_simToCell, m_mesh.cols());
    }
}

LocalConstRegression:: LocalConstRegression(const   LocalConstRegression &p_object): LocalRegression(p_object),
    m_matReg(p_object.getMatReg())

{}


void LocalConstRegression::updateSimulations(const bool &p_bZeroDate, const ArrayXXd  &p_particles)
{
    BaseRegression::updateSimulationsBase(p_bZeroDate, p_particles);
    m_simToCell.resize(p_particles.cols());
    if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
    {
        if (p_particles.rows() != m_nbMesh.size())
        {
            cout << " Dimension nd  of particles of size (nd, nbSimu) is " << p_particles.rows();
            cout << " and   should be equal to the size of the array describing the mesh refinement " << m_nbMesh.transpose() << endl ;
            abort();
        }

        meshCalculationLocalRegression(m_particles, m_nbMesh, m_simToCell, m_mesh, m_mesh1D);

        // regression matrix
        m_matReg = localConstMatrixCalculation(m_simToCell, m_mesh.cols());
    }
    else
    {
        m_simToCell.setConstant(0);
    }
}

ArrayXd LocalConstRegression::getCoordBasisFunction(const ArrayXd &p_fToRegress) const
{
    if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
    {
        Map<const ArrayXXd>  fToRegress2D(p_fToRegress.data(), 1, p_fToRegress.size());
        ArrayXXd secMember2D = localConstSecondMemberCalculation(m_simToCell, m_mesh.cols(), fToRegress2D);
        // output
        Map<const ArrayXd > secMember(secMember2D.data(), secMember2D.size());
        ArrayXd ret = secMember / m_matReg;
        return ret;
    }
    else
    {
        ArrayXd retAverage(1);
        retAverage(0) = p_fToRegress.mean();
        return retAverage;
    }
}

ArrayXXd LocalConstRegression::getCoordBasisFunctionMultiple(const ArrayXXd &p_fToRegress) const
{
    if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
    {
        ArrayXXd secMember = localConstSecondMemberCalculation(m_simToCell, m_mesh.cols(), p_fToRegress);
        ArrayXXd regFunc(p_fToRegress.rows(), secMember.cols());
        for (int im = 0; im < m_matReg.size(); ++im)
            for (int nsm = 0; nsm <  p_fToRegress.rows(); ++nsm)
                regFunc(nsm, im) = secMember(nsm, im) / m_matReg(im);;
        return regFunc;
    }
    else
    {
        ArrayXXd retAverage(p_fToRegress.rows(), 1);
        for (int nsm = 0; nsm <  p_fToRegress.rows(); ++nsm)
            retAverage.row(nsm).setConstant(p_fToRegress.row(nsm).mean());
        return retAverage;
    }

}

ArrayXd LocalConstRegression::reconstruction(const ArrayXd &p_basisCoefficients) const
{
    if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
    {
        Map<const ArrayXXd> BasisCoefficients(p_basisCoefficients.data(), 1, p_basisCoefficients.size());
        return localConstReconstruction(m_simToCell, BasisCoefficients).row(0);
    }
    else
        return ArrayXd::Constant(m_simToCell.size(), p_basisCoefficients(0));
}

ArrayXXd LocalConstRegression::reconstructionMultiple(const ArrayXXd &p_basisCoefficients) const
{
    if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
    {
        return localConstReconstruction(m_simToCell, p_basisCoefficients);
    }
    else
    {
        ArrayXXd retValue(p_basisCoefficients.rows(), m_simToCell.size());
        for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
            retValue.row(nsm).setConstant(p_basisCoefficients(nsm, 0));
        return retValue ;
    }
}

double LocalConstRegression::reconstructionASim(const int &p_isim, const ArrayXd   &p_basisCoefficients) const
{
    if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
    {
        return p_basisCoefficients(m_simToCell(p_isim)) ;
    }
    else
    {
        return p_basisCoefficients(0);
    }
}


ArrayXd LocalConstRegression::getAllSimulations(const ArrayXd &p_fToRegress) const
{
    if ((m_bZeroDate) || (m_nbMesh.size() == 0))
        return ArrayXd::Constant(p_fToRegress.size(), p_fToRegress.mean());

    Map<const ArrayXXd>  fToRegress2D(p_fToRegress.data(), 1, p_fToRegress.size());
    ArrayXXd BasisCoefficients = getCoordBasisFunctionMultiple(fToRegress2D);
    ArrayXXd  condEspectationValues = localConstReconstruction(m_simToCell,  BasisCoefficients);
    return condEspectationValues.row(0);
}

ArrayXXd LocalConstRegression::getAllSimulationsMultiple(const ArrayXXd &p_fToRegress) const
{
    if ((m_bZeroDate) || (m_nbMesh.size() == 0))
    {
        ArrayXXd ret(p_fToRegress.rows(), p_fToRegress.cols());
        for (int ism = 0; ism < p_fToRegress.rows(); ++ism)
            ret.row(ism).setConstant(p_fToRegress.row(ism).mean());
        return ret;
    }
    ArrayXXd BasisCoefficients = getCoordBasisFunctionMultiple(p_fToRegress);
    return localConstReconstruction(m_simToCell, BasisCoefficients);
}

double LocalConstRegression::getValue(const ArrayXd &p_coordinates, const ArrayXd &p_coordBasisFunction) const
{
    if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
    {
        // rotation
        VectorXd x = m_svdMatrix * ((p_coordinates - m_meanX) / m_etypX).matrix();
        Map<const ArrayXXd> coordBasisFunction2D(p_coordBasisFunction.data(), 1, p_coordBasisFunction.size());
        return localConstReconstructionOnePoint(x.array(), m_mesh1D, coordBasisFunction2D)(0);
    }
    else
    {
        return p_coordBasisFunction(0);
    }
}

double LocalConstRegression::getAValue(const ArrayXd &p_coordinates,  const ArrayXd &p_ptOfStock,
                                       const vector< shared_ptr<InterpolatorSpectral> > &p_interpFuncBasis) const
{
    if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
    {
        // rotation
        VectorXd x = m_svdMatrix * ((p_coordinates - m_meanX) / m_etypX).matrix();
        return localConstReconsOnePointSimStock(x.array(), p_ptOfStock, p_interpFuncBasis, m_mesh1D);
    }
    else
    {
        return p_interpFuncBasis[0]->apply(p_ptOfStock);
    }
}

ArrayXd LocalConstRegression::getCoordBasisFunctionOneCell(const int &p_iCell, const ArrayXd &p_fToRegress) const
{
    ArrayXd retAverage(1);
    if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
    {
        retAverage(0) = 0. ;
        for (size_t i = 0; i <   m_simulBelongingToCell[p_iCell]->size(); ++i)
            retAverage(0) += p_fToRegress((*m_simulBelongingToCell[p_iCell])[i]);
        retAverage(0) /= m_simulBelongingToCell[p_iCell]->size();
    }
    else
    {
        retAverage(0) = p_fToRegress.mean();
    }
    return retAverage;

}

ArrayXXd LocalConstRegression::getCoordBasisFunctionMultipleOneCell(const int &p_iCell, const ArrayXXd &p_fToRegress) const
{
    ArrayXXd retAverage = ArrayXXd::Zero(p_fToRegress.rows(), 1);
    if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
    {
        for (size_t i = 0; i <   m_simulBelongingToCell[p_iCell]->size(); ++i)
            for (int j = 0; j < p_fToRegress.rows(); ++j)
                retAverage(j, 0) += p_fToRegress(j, (*m_simulBelongingToCell[p_iCell])[i]);
        retAverage /= m_simulBelongingToCell[p_iCell]->size();
    }
    else
    {
        for (int nsm = 0; nsm <  p_fToRegress.rows(); ++nsm)
            retAverage.row(nsm).setConstant(p_fToRegress.row(nsm).mean());
    }
    return retAverage;
}

Eigen::ArrayXd LocalConstRegression::getValuesOneCell(const Eigen::ArrayXd &, const int &p_cell, const Eigen::ArrayXXd   &p_foncBasisCoef) const
{
    if ((!m_bZeroDate) && (m_nbMesh.size() != 0))
    {
        return  p_foncBasisCoef.col(p_cell);
    }
    else
        return  p_foncBasisCoef.col(0);
}
}