File: LocalGridKernelRegression.cpp

package info (click to toggle)
stopt 5.12%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,860 kB
  • sloc: cpp: 70,456; python: 5,950; makefile: 72; sh: 57
file content (229 lines) | stat: -rw-r--r-- 7,511 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// Copyright (C) 2017 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <Eigen/SVD>
#include <Eigen/Cholesky>
#include "StOpt/regression/LocalGridKernelRegression.h"
#include "StOpt/regression/gridKernelConstruction.h"
#include "StOpt/regression/gridKernelRegression.h"
#include <iostream>

using namespace std ;
using namespace Eigen ;

namespace StOpt
{

LocalGridKernelRegression::LocalGridKernelRegression(const bool &p_bZeroDate,
        const ArrayXXd  &p_particles,
        const double &p_coeffBandWidth,
        const double   &p_coefNbGridPoint,
        const bool &p_bLinear):
    BaseRegression(p_bZeroDate, p_particles, true),
    m_iSort(p_particles.rows(), p_particles.cols()), m_xG(p_particles.rows(), p_particles.cols()),  m_coeffBandWidth(p_coeffBandWidth), m_coefNbGridPoint(p_coefNbGridPoint), m_bLinear(p_bLinear)
{
    if (!p_bZeroDate)
        createGrid();

}


void LocalGridKernelRegression::updateSimulations(const bool &p_bZeroDate, const ArrayXXd &p_particles)
{
    BaseRegression::updateSimulationsBase(p_bZeroDate, p_particles);
    if (!p_bZeroDate)
    {
        m_iSort.resize(p_particles.rows(), p_particles.cols());
        m_xG.resize(p_particles.rows(), p_particles.cols());
        createGrid();
    }
}


void LocalGridKernelRegression::createGrid()
{
    ArrayXi aN, aK;
    int dEff;

    preprocessData(m_particles, m_sing, m_coeffBandWidth, m_coefNbGridPoint, aN, aK, dEff);

    // sort
    ArrayXXd sX(m_particles.rows(), m_particles.cols());
    for (int id = 0 ; id <  m_particles.rows(); ++id)
    {
        vector<pair<double, int> > toSort(m_particles.cols());
        for (int is = 0; is < m_particles.cols(); ++is)
            toSort[is] = make_pair(m_particles(id, is), is);
        sort(toSort.begin(), toSort.end());
        for (int is = 0; is < m_particles.cols(); ++is)
        {
            m_iSort(id, is) = toSort[is].second;
            sX(id, is) = toSort[is].first;
        }
    }
    adaptiveBandwithNd(sX, m_iSort, aN, aK, m_h, m_z, m_zl, m_zr, m_g, m_xG);

}


ArrayXd  LocalGridKernelRegression::getCoordBasisFunction(const ArrayXd &p_fToRegress) const
{
    if (!BaseRegression::m_bZeroDate)
        return gridKernelRegressedValuesOnGrid(m_particles, p_fToRegress,  m_z, m_h,  m_g, m_xG, m_zl, m_zr, m_bLinear) ;
    else
    {
        ArrayXd retAverage(1);
        retAverage(0) = p_fToRegress.mean();
        return retAverage;
    }
}

ArrayXd  LocalGridKernelRegression::getCoordBasisFunctionStable(const ArrayXd &p_fToRegress) const
{

    if (!BaseRegression::m_bZeroDate)
        return gridKernelRegressedValuesOnGridStable(m_particles, p_fToRegress,  m_z, m_h,  m_g, m_xG, m_zl, m_zr, m_bLinear) ;
    else
    {
        ArrayXd retAverage(1);
        retAverage(0) = p_fToRegress.mean();
        return retAverage;
    }
}
ArrayXXd  LocalGridKernelRegression::getCoordBasisFunctionMultiple(const ArrayXXd &p_fToRegress) const
{
    if (!BaseRegression::m_bZeroDate)
    {
        vector< unique_ptr< ArrayXd> >   regressedLocVec;
        for (int ireg = 0; ireg < p_fToRegress.rows(); ++ireg)
        {
            regressedLocVec.push_back(make_unique<ArrayXd>(gridKernelRegressedValuesOnGrid(m_particles, p_fToRegress.row(ireg).transpose(),  m_z, m_h,  m_g, m_xG, m_zl, m_zr, m_bLinear)));
        }

        ArrayXXd regressed(p_fToRegress.rows(), regressedLocVec[0]->size());
        for (int ireg = 0; ireg < p_fToRegress.rows(); ++ireg)
            regressed.row(ireg) = regressedLocVec[ireg]->transpose();
        return regressed;
    }
    else
    {
        ArrayXXd retAverage(p_fToRegress.rows(), 1);
        for (int nsm = 0; nsm <  p_fToRegress.rows(); ++nsm)
            retAverage.row(nsm).setConstant(p_fToRegress.row(nsm).mean());
        return retAverage;
    }
}

ArrayXd  LocalGridKernelRegression::getAllSimulations(const ArrayXd &p_fToRegress) const
{
    if (!BaseRegression::m_bZeroDate)
    {
        return gridKernelRegressedValues(m_particles, p_fToRegress,  m_z, m_h,  m_g, m_xG, m_zl, m_zr, m_iSort, m_bLinear) ;
    }
    else
    {
        return ArrayXd::Constant(p_fToRegress.size(), p_fToRegress.mean());
    }
}

ArrayXXd  LocalGridKernelRegression::getAllSimulationsMultiple(const ArrayXXd &p_fToRegress) const
{
    if (!BaseRegression::m_bZeroDate)
    {
        ArrayXXd regressed(p_fToRegress.rows(), p_fToRegress.cols());
        for (int ireg = 0; ireg < p_fToRegress.rows(); ++ireg)
        {
            ArrayXd regressedLoc = gridKernelRegressedValues(m_particles, p_fToRegress.row(ireg).transpose(),  m_z, m_h,  m_g, m_xG, m_zl, m_zr, m_iSort, m_bLinear) ;
            regressed.row(ireg) = regressedLoc.transpose();
        }
        return regressed;
    }
    else
    {
        ArrayXXd ret(p_fToRegress.rows(), p_fToRegress.cols());
        for (int ism = 0; ism < p_fToRegress.rows(); ++ism)
            ret.row(ism).setConstant(p_fToRegress.row(ism).mean());
        return ret;
    }
}


ArrayXd LocalGridKernelRegression::reconstruction(const ArrayXd   &p_basisCoefficients) const
{
    if (!BaseRegression::m_bZeroDate)
        return fromGridValuesGetRegAllSim(m_particles, p_basisCoefficients, m_z, m_iSort);
    else
    {
        return ArrayXd::Constant(m_particles.cols(), p_basisCoefficients(0));
    }
}


ArrayXXd LocalGridKernelRegression::reconstructionMultiple(const ArrayXXd   &p_basisCoefficients) const
{
    if (!BaseRegression::m_bZeroDate)
    {
        ArrayXXd regressed(p_basisCoefficients.rows(), m_particles.cols());
        for (int ireg = 0; ireg < p_basisCoefficients.rows(); ++ireg)
        {
            ArrayXd regressedLoc = fromGridValuesGetRegAllSim(m_particles, p_basisCoefficients.row(ireg).transpose(), m_z, m_iSort) ;
            regressed.row(ireg) = regressedLoc.transpose();
        }
        return regressed;
    }
    else
    {
        ArrayXXd retValue(p_basisCoefficients.rows(), m_particles.cols());
        for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
            retValue.row(nsm).setConstant(p_basisCoefficients(nsm, 0));
        return retValue ;
    }
}

double  LocalGridKernelRegression::reconstructionASim(const int &p_isim, const ArrayXd   &p_basisCoefficients) const
{
    double ret ;
    if (!BaseRegression::m_bZeroDate)
    {
        ret = fromGridValuesGetRegASim(m_particles.col(p_isim), p_basisCoefficients, m_z);
    }
    else
    {
        ret = p_basisCoefficients(0);
    }
    return ret ;
}

double LocalGridKernelRegression::getValue(const ArrayXd   &p_coordinates,
        const ArrayXd   &p_coordBasisFunction)  const
{
    double ret  ;
    if (!BaseRegression::m_bZeroDate)
    {
        VectorXd x = p_coordinates.matrix();
        x = ((x.array() - m_meanX) / m_etypX).matrix();
        x = m_svdMatrix * x;
        ret =  fromGridValuesGetRegASim(x.array(), p_coordBasisFunction, m_z);
    }
    else
        ret =  p_coordBasisFunction(0);
    return ret ;
}


double LocalGridKernelRegression::getAValue(const ArrayXd &p_coordinates,  const ArrayXd &p_ptOfStock,
        const vector< shared_ptr<InterpolatorSpectral> > &p_interpFuncBasis) const
{
    if (!BaseRegression::m_bZeroDate)
    {
        VectorXd x = p_coordinates.matrix();
        x = ((x.array() - m_meanX) / m_etypX).matrix();
        x = m_svdMatrix * x;
        return  fromGridValuesGetRegASimOnBasis(x.array(), m_z, p_ptOfStock, p_interpFuncBasis);
    }
    else
    {
        return p_interpFuncBasis[0]->apply(p_ptOfStock);
    }
}
}