1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
// Copyright (C) 2017 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <Eigen/SVD>
#include <Eigen/Cholesky>
#include "StOpt/regression/LocalGridKernelRegression.h"
#include "StOpt/regression/gridKernelConstruction.h"
#include "StOpt/regression/gridKernelRegression.h"
#include <iostream>
using namespace std ;
using namespace Eigen ;
namespace StOpt
{
LocalGridKernelRegression::LocalGridKernelRegression(const bool &p_bZeroDate,
const ArrayXXd &p_particles,
const double &p_coeffBandWidth,
const double &p_coefNbGridPoint,
const bool &p_bLinear):
BaseRegression(p_bZeroDate, p_particles, true),
m_iSort(p_particles.rows(), p_particles.cols()), m_xG(p_particles.rows(), p_particles.cols()), m_coeffBandWidth(p_coeffBandWidth), m_coefNbGridPoint(p_coefNbGridPoint), m_bLinear(p_bLinear)
{
if (!p_bZeroDate)
createGrid();
}
void LocalGridKernelRegression::updateSimulations(const bool &p_bZeroDate, const ArrayXXd &p_particles)
{
BaseRegression::updateSimulationsBase(p_bZeroDate, p_particles);
if (!p_bZeroDate)
{
m_iSort.resize(p_particles.rows(), p_particles.cols());
m_xG.resize(p_particles.rows(), p_particles.cols());
createGrid();
}
}
void LocalGridKernelRegression::createGrid()
{
ArrayXi aN, aK;
int dEff;
preprocessData(m_particles, m_sing, m_coeffBandWidth, m_coefNbGridPoint, aN, aK, dEff);
// sort
ArrayXXd sX(m_particles.rows(), m_particles.cols());
for (int id = 0 ; id < m_particles.rows(); ++id)
{
vector<pair<double, int> > toSort(m_particles.cols());
for (int is = 0; is < m_particles.cols(); ++is)
toSort[is] = make_pair(m_particles(id, is), is);
sort(toSort.begin(), toSort.end());
for (int is = 0; is < m_particles.cols(); ++is)
{
m_iSort(id, is) = toSort[is].second;
sX(id, is) = toSort[is].first;
}
}
adaptiveBandwithNd(sX, m_iSort, aN, aK, m_h, m_z, m_zl, m_zr, m_g, m_xG);
}
ArrayXd LocalGridKernelRegression::getCoordBasisFunction(const ArrayXd &p_fToRegress) const
{
if (!BaseRegression::m_bZeroDate)
return gridKernelRegressedValuesOnGrid(m_particles, p_fToRegress, m_z, m_h, m_g, m_xG, m_zl, m_zr, m_bLinear) ;
else
{
ArrayXd retAverage(1);
retAverage(0) = p_fToRegress.mean();
return retAverage;
}
}
ArrayXd LocalGridKernelRegression::getCoordBasisFunctionStable(const ArrayXd &p_fToRegress) const
{
if (!BaseRegression::m_bZeroDate)
return gridKernelRegressedValuesOnGridStable(m_particles, p_fToRegress, m_z, m_h, m_g, m_xG, m_zl, m_zr, m_bLinear) ;
else
{
ArrayXd retAverage(1);
retAverage(0) = p_fToRegress.mean();
return retAverage;
}
}
ArrayXXd LocalGridKernelRegression::getCoordBasisFunctionMultiple(const ArrayXXd &p_fToRegress) const
{
if (!BaseRegression::m_bZeroDate)
{
vector< unique_ptr< ArrayXd> > regressedLocVec;
for (int ireg = 0; ireg < p_fToRegress.rows(); ++ireg)
{
regressedLocVec.push_back(make_unique<ArrayXd>(gridKernelRegressedValuesOnGrid(m_particles, p_fToRegress.row(ireg).transpose(), m_z, m_h, m_g, m_xG, m_zl, m_zr, m_bLinear)));
}
ArrayXXd regressed(p_fToRegress.rows(), regressedLocVec[0]->size());
for (int ireg = 0; ireg < p_fToRegress.rows(); ++ireg)
regressed.row(ireg) = regressedLocVec[ireg]->transpose();
return regressed;
}
else
{
ArrayXXd retAverage(p_fToRegress.rows(), 1);
for (int nsm = 0; nsm < p_fToRegress.rows(); ++nsm)
retAverage.row(nsm).setConstant(p_fToRegress.row(nsm).mean());
return retAverage;
}
}
ArrayXd LocalGridKernelRegression::getAllSimulations(const ArrayXd &p_fToRegress) const
{
if (!BaseRegression::m_bZeroDate)
{
return gridKernelRegressedValues(m_particles, p_fToRegress, m_z, m_h, m_g, m_xG, m_zl, m_zr, m_iSort, m_bLinear) ;
}
else
{
return ArrayXd::Constant(p_fToRegress.size(), p_fToRegress.mean());
}
}
ArrayXXd LocalGridKernelRegression::getAllSimulationsMultiple(const ArrayXXd &p_fToRegress) const
{
if (!BaseRegression::m_bZeroDate)
{
ArrayXXd regressed(p_fToRegress.rows(), p_fToRegress.cols());
for (int ireg = 0; ireg < p_fToRegress.rows(); ++ireg)
{
ArrayXd regressedLoc = gridKernelRegressedValues(m_particles, p_fToRegress.row(ireg).transpose(), m_z, m_h, m_g, m_xG, m_zl, m_zr, m_iSort, m_bLinear) ;
regressed.row(ireg) = regressedLoc.transpose();
}
return regressed;
}
else
{
ArrayXXd ret(p_fToRegress.rows(), p_fToRegress.cols());
for (int ism = 0; ism < p_fToRegress.rows(); ++ism)
ret.row(ism).setConstant(p_fToRegress.row(ism).mean());
return ret;
}
}
ArrayXd LocalGridKernelRegression::reconstruction(const ArrayXd &p_basisCoefficients) const
{
if (!BaseRegression::m_bZeroDate)
return fromGridValuesGetRegAllSim(m_particles, p_basisCoefficients, m_z, m_iSort);
else
{
return ArrayXd::Constant(m_particles.cols(), p_basisCoefficients(0));
}
}
ArrayXXd LocalGridKernelRegression::reconstructionMultiple(const ArrayXXd &p_basisCoefficients) const
{
if (!BaseRegression::m_bZeroDate)
{
ArrayXXd regressed(p_basisCoefficients.rows(), m_particles.cols());
for (int ireg = 0; ireg < p_basisCoefficients.rows(); ++ireg)
{
ArrayXd regressedLoc = fromGridValuesGetRegAllSim(m_particles, p_basisCoefficients.row(ireg).transpose(), m_z, m_iSort) ;
regressed.row(ireg) = regressedLoc.transpose();
}
return regressed;
}
else
{
ArrayXXd retValue(p_basisCoefficients.rows(), m_particles.cols());
for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
retValue.row(nsm).setConstant(p_basisCoefficients(nsm, 0));
return retValue ;
}
}
double LocalGridKernelRegression::reconstructionASim(const int &p_isim, const ArrayXd &p_basisCoefficients) const
{
double ret ;
if (!BaseRegression::m_bZeroDate)
{
ret = fromGridValuesGetRegASim(m_particles.col(p_isim), p_basisCoefficients, m_z);
}
else
{
ret = p_basisCoefficients(0);
}
return ret ;
}
double LocalGridKernelRegression::getValue(const ArrayXd &p_coordinates,
const ArrayXd &p_coordBasisFunction) const
{
double ret ;
if (!BaseRegression::m_bZeroDate)
{
VectorXd x = p_coordinates.matrix();
x = ((x.array() - m_meanX) / m_etypX).matrix();
x = m_svdMatrix * x;
ret = fromGridValuesGetRegASim(x.array(), p_coordBasisFunction, m_z);
}
else
ret = p_coordBasisFunction(0);
return ret ;
}
double LocalGridKernelRegression::getAValue(const ArrayXd &p_coordinates, const ArrayXd &p_ptOfStock,
const vector< shared_ptr<InterpolatorSpectral> > &p_interpFuncBasis) const
{
if (!BaseRegression::m_bZeroDate)
{
VectorXd x = p_coordinates.matrix();
x = ((x.array() - m_meanX) / m_etypX).matrix();
x = m_svdMatrix * x;
return fromGridValuesGetRegASimOnBasis(x.array(), m_z, p_ptOfStock, p_interpFuncBasis);
}
else
{
return p_interpFuncBasis[0]->apply(p_ptOfStock);
}
}
}
|