File: LocalSameSizeConstRegression.cpp

package info (click to toggle)
stopt 5.12%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,860 kB
  • sloc: cpp: 70,456; python: 5,950; makefile: 72; sh: 57
file content (225 lines) | stat: -rw-r--r-- 7,351 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <vector>
#include <memory>
#include <iostream>
#include <Eigen/Dense>
#include "StOpt/regression/LocalSameSizeConstRegression.h"
#include "StOpt/core/grids/InterpolatorSpectral.h"

using namespace std;
using namespace Eigen;

namespace StOpt
{


LocalSameSizeConstRegression::LocalSameSizeConstRegression(const bool &p_bZeroDate,
        const ArrayXXd  &p_particles,
        const ArrayXd &p_lowValues,
        const ArrayXd &p_step,
        const  ArrayXi &p_nbStep) : LocalSameSizeRegression(p_bZeroDate, p_particles, p_lowValues, p_step, p_nbStep)
{
    if (!m_bZeroDate)
    {
        // regression matrix
        m_matReg = ArrayXd::Zero(m_nbMeshTotal);
        for (size_t i = 0; i < m_simAndCell.size(); ++i)
            m_matReg(m_simAndCell[i](1)) += 1;
        // now set diagonal with no particle to 1
        for (int icell = 0; icell < m_nbMeshTotal; ++icell)
            if (m_matReg(icell) <= 0.)
                m_matReg(icell) = 1;
    }
}

LocalSameSizeConstRegression:: LocalSameSizeConstRegression(const   LocalSameSizeConstRegression &p_object): LocalSameSizeRegression(p_object),
    m_matReg(p_object.getMatReg())

{}


void LocalSameSizeConstRegression::updateSimulations(const bool &p_bZeroDate, const ArrayXXd  &p_particles)
{
    BaseRegression::updateSimulationsBase(p_bZeroDate, p_particles);
    if (!m_bZeroDate)
    {

        // update utilitary arrays
        fillInSimCell(m_particles);

        m_matReg = ArrayXd::Zero(m_nbMeshTotal);
        for (size_t i = 0; i < m_simAndCell.size(); ++i)
            m_matReg(m_simAndCell[i](1)) += 1;
        // now set diagonal with no particle to 1
        for (int icell = 0; icell < m_nbMeshTotal; ++icell)
            if (m_matReg(icell) <= 0.)
                m_matReg(icell) = 1;
    }
}

ArrayXd LocalSameSizeConstRegression::getCoordBasisFunction(const ArrayXd &p_fToRegress) const
{
    if (!m_bZeroDate)
    {
        ArrayXd ret = ArrayXd::Zero(m_matReg.size());
        // second member
        for (size_t i = 0; i < m_simAndCell.size(); ++i)
            ret(m_simAndCell[i](1)) += p_fToRegress(m_simAndCell[i](0));
        return ret / m_matReg;
    }
    else
    {
        ArrayXd retAverage(1);
        retAverage(0) = p_fToRegress.mean();
        return retAverage;
    }
}

ArrayXXd LocalSameSizeConstRegression::getCoordBasisFunctionMultiple(const ArrayXXd &p_fToRegress) const
{
    if (!m_bZeroDate)
    {
        ArrayXXd regFunc = ArrayXXd::Zero(p_fToRegress.rows(), m_matReg.size());
        // second member
        for (size_t i = 0; i < m_simAndCell.size(); ++i)
            regFunc.col(m_simAndCell[i](1)) += p_fToRegress.col(m_simAndCell[i](0));

        for (int im = 0; im < m_matReg.size(); ++im)
            regFunc.col(im) /= m_matReg(im);
        return regFunc;
    }
    else
    {
        ArrayXXd retAverage(p_fToRegress.rows(), 1);
        for (int nsm = 0; nsm <  p_fToRegress.rows(); ++nsm)
            retAverage.row(nsm).setConstant(p_fToRegress.row(nsm).mean());
        return retAverage;
    }

}

ArrayXd LocalSameSizeConstRegression::reconstruction(const ArrayXd &p_basisCoefficients) const
{
    if (!m_bZeroDate)
    {
        ArrayXd ret = ArrayXd::Zero(m_particles.cols());
        for (size_t im  = 0 ; im <  m_simAndCell.size(); ++im)
            ret(m_simAndCell[im](0)) = p_basisCoefficients(m_simAndCell[im](1));
        return ret ;
    }
    else
        return ArrayXd::Constant(m_simToCell.size(), p_basisCoefficients(0));
}

ArrayXXd LocalSameSizeConstRegression::reconstructionMultiple(const ArrayXXd &p_basisCoefficients) const
{
    if (!m_bZeroDate)
    {
        ArrayXXd ret = ArrayXXd::Zero(p_basisCoefficients.rows(), m_particles.cols());
        for (size_t im  = 0 ; im <  m_simAndCell.size(); ++im)
            for (int nsm  = 0; nsm < p_basisCoefficients.rows(); ++nsm)
                ret(nsm, m_simAndCell[im](0)) = p_basisCoefficients(nsm, m_simAndCell[im](1));
        return ret ;
    }
    else
    {
        ArrayXXd retValue(p_basisCoefficients.rows(), m_particles.cols());
        for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
            retValue.row(nsm).setConstant(p_basisCoefficients(nsm, 0));
        return retValue ;
    }
}

double LocalSameSizeConstRegression::reconstructionASim(const int &p_isim, const ArrayXd   &p_basisCoefficients) const
{
    if (!m_bZeroDate)
    {
        if (m_simToCell(p_isim) < 0)
            return 0;
        else
            return p_basisCoefficients(m_simToCell(p_isim)) ;
    }
    else
    {
        return p_basisCoefficients(0);
    }
}


ArrayXd LocalSameSizeConstRegression::getAllSimulations(const ArrayXd &p_fToRegress) const
{
    if (m_bZeroDate)
        return ArrayXd::Constant(p_fToRegress.size(), p_fToRegress.mean());
    // coefficients
    ArrayXd BasisCoefficients = ArrayXd::Zero(m_matReg.size());
    // second member
    for (size_t i = 0; i < m_simAndCell.size(); ++i)
        BasisCoefficients(m_simAndCell[i](1)) += p_fToRegress(m_simAndCell[i](0));
    BasisCoefficients /=  m_matReg;
    ArrayXd  condEspectationValues = ArrayXd::Zero(p_fToRegress.size());
    for (size_t im  = 0 ; im <  m_simAndCell.size(); ++im)
        condEspectationValues(m_simAndCell[im](0)) = BasisCoefficients(m_simAndCell[im](1));
    return condEspectationValues;
}

ArrayXXd LocalSameSizeConstRegression::getAllSimulationsMultiple(const ArrayXXd &p_fToRegress) const
{
    if (m_bZeroDate)
    {
        ArrayXXd ret(p_fToRegress.rows(), p_fToRegress.cols());
        for (int ism = 0; ism < p_fToRegress.rows(); ++ism)
            ret.row(ism).setConstant(p_fToRegress.row(ism).mean());
        return ret;
    }
    // coefficients
    ArrayXXd BasisCoefficients = ArrayXXd::Zero(p_fToRegress.rows(), m_matReg.size());
    // second member
    for (size_t i = 0; i < m_simAndCell.size(); ++i)
        BasisCoefficients.col(m_simAndCell[i](1)) += p_fToRegress.col(m_simAndCell[i](0));

    for (int im = 0; im < m_matReg.size(); ++im)
        BasisCoefficients.col(im) /= m_matReg(im);

    ArrayXXd  condEspectationValues = ArrayXXd::Zero(p_fToRegress.rows(), p_fToRegress.cols());
    for (size_t im  = 0 ; im <  m_simAndCell.size(); ++im)
        condEspectationValues.col(m_simAndCell[im](0)) = BasisCoefficients.col(m_simAndCell[im](1));
    return condEspectationValues;
}

double LocalSameSizeConstRegression::getValue(const ArrayXd &p_coordinates, const ArrayXd &p_coordBasisFunction) const
{
    if (!m_bZeroDate)
    {
        // point location
        int ipos = pointLocation(p_coordinates);
        if (ipos < 0)
            return 0. ;
        else
            return p_coordBasisFunction(ipos);
    }
    else
    {
        return p_coordBasisFunction(0);
    }
}

double LocalSameSizeConstRegression::getAValue(const ArrayXd &p_coordinates,  const ArrayXd &p_ptOfStock,
        const vector< shared_ptr<InterpolatorSpectral> > &p_interpFuncBasis) const
{
    if (!m_bZeroDate)
    {
        // point location
        int ipos = pointLocation(p_coordinates);
        if (ipos < 0)
            return 0. ;
        else
            return  p_interpFuncBasis[ipos]->apply(p_ptOfStock);
    }
    else
    {
        return p_interpFuncBasis[0]->apply(p_ptOfStock);
    }
}
}