1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <vector>
#include <memory>
#include <iostream>
#include <Eigen/Dense>
#include "StOpt/regression/LocalSameSizeConstRegression.h"
#include "StOpt/core/grids/InterpolatorSpectral.h"
using namespace std;
using namespace Eigen;
namespace StOpt
{
LocalSameSizeConstRegression::LocalSameSizeConstRegression(const bool &p_bZeroDate,
const ArrayXXd &p_particles,
const ArrayXd &p_lowValues,
const ArrayXd &p_step,
const ArrayXi &p_nbStep) : LocalSameSizeRegression(p_bZeroDate, p_particles, p_lowValues, p_step, p_nbStep)
{
if (!m_bZeroDate)
{
// regression matrix
m_matReg = ArrayXd::Zero(m_nbMeshTotal);
for (size_t i = 0; i < m_simAndCell.size(); ++i)
m_matReg(m_simAndCell[i](1)) += 1;
// now set diagonal with no particle to 1
for (int icell = 0; icell < m_nbMeshTotal; ++icell)
if (m_matReg(icell) <= 0.)
m_matReg(icell) = 1;
}
}
LocalSameSizeConstRegression:: LocalSameSizeConstRegression(const LocalSameSizeConstRegression &p_object): LocalSameSizeRegression(p_object),
m_matReg(p_object.getMatReg())
{}
void LocalSameSizeConstRegression::updateSimulations(const bool &p_bZeroDate, const ArrayXXd &p_particles)
{
BaseRegression::updateSimulationsBase(p_bZeroDate, p_particles);
if (!m_bZeroDate)
{
// update utilitary arrays
fillInSimCell(m_particles);
m_matReg = ArrayXd::Zero(m_nbMeshTotal);
for (size_t i = 0; i < m_simAndCell.size(); ++i)
m_matReg(m_simAndCell[i](1)) += 1;
// now set diagonal with no particle to 1
for (int icell = 0; icell < m_nbMeshTotal; ++icell)
if (m_matReg(icell) <= 0.)
m_matReg(icell) = 1;
}
}
ArrayXd LocalSameSizeConstRegression::getCoordBasisFunction(const ArrayXd &p_fToRegress) const
{
if (!m_bZeroDate)
{
ArrayXd ret = ArrayXd::Zero(m_matReg.size());
// second member
for (size_t i = 0; i < m_simAndCell.size(); ++i)
ret(m_simAndCell[i](1)) += p_fToRegress(m_simAndCell[i](0));
return ret / m_matReg;
}
else
{
ArrayXd retAverage(1);
retAverage(0) = p_fToRegress.mean();
return retAverage;
}
}
ArrayXXd LocalSameSizeConstRegression::getCoordBasisFunctionMultiple(const ArrayXXd &p_fToRegress) const
{
if (!m_bZeroDate)
{
ArrayXXd regFunc = ArrayXXd::Zero(p_fToRegress.rows(), m_matReg.size());
// second member
for (size_t i = 0; i < m_simAndCell.size(); ++i)
regFunc.col(m_simAndCell[i](1)) += p_fToRegress.col(m_simAndCell[i](0));
for (int im = 0; im < m_matReg.size(); ++im)
regFunc.col(im) /= m_matReg(im);
return regFunc;
}
else
{
ArrayXXd retAverage(p_fToRegress.rows(), 1);
for (int nsm = 0; nsm < p_fToRegress.rows(); ++nsm)
retAverage.row(nsm).setConstant(p_fToRegress.row(nsm).mean());
return retAverage;
}
}
ArrayXd LocalSameSizeConstRegression::reconstruction(const ArrayXd &p_basisCoefficients) const
{
if (!m_bZeroDate)
{
ArrayXd ret = ArrayXd::Zero(m_particles.cols());
for (size_t im = 0 ; im < m_simAndCell.size(); ++im)
ret(m_simAndCell[im](0)) = p_basisCoefficients(m_simAndCell[im](1));
return ret ;
}
else
return ArrayXd::Constant(m_simToCell.size(), p_basisCoefficients(0));
}
ArrayXXd LocalSameSizeConstRegression::reconstructionMultiple(const ArrayXXd &p_basisCoefficients) const
{
if (!m_bZeroDate)
{
ArrayXXd ret = ArrayXXd::Zero(p_basisCoefficients.rows(), m_particles.cols());
for (size_t im = 0 ; im < m_simAndCell.size(); ++im)
for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
ret(nsm, m_simAndCell[im](0)) = p_basisCoefficients(nsm, m_simAndCell[im](1));
return ret ;
}
else
{
ArrayXXd retValue(p_basisCoefficients.rows(), m_particles.cols());
for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
retValue.row(nsm).setConstant(p_basisCoefficients(nsm, 0));
return retValue ;
}
}
double LocalSameSizeConstRegression::reconstructionASim(const int &p_isim, const ArrayXd &p_basisCoefficients) const
{
if (!m_bZeroDate)
{
if (m_simToCell(p_isim) < 0)
return 0;
else
return p_basisCoefficients(m_simToCell(p_isim)) ;
}
else
{
return p_basisCoefficients(0);
}
}
ArrayXd LocalSameSizeConstRegression::getAllSimulations(const ArrayXd &p_fToRegress) const
{
if (m_bZeroDate)
return ArrayXd::Constant(p_fToRegress.size(), p_fToRegress.mean());
// coefficients
ArrayXd BasisCoefficients = ArrayXd::Zero(m_matReg.size());
// second member
for (size_t i = 0; i < m_simAndCell.size(); ++i)
BasisCoefficients(m_simAndCell[i](1)) += p_fToRegress(m_simAndCell[i](0));
BasisCoefficients /= m_matReg;
ArrayXd condEspectationValues = ArrayXd::Zero(p_fToRegress.size());
for (size_t im = 0 ; im < m_simAndCell.size(); ++im)
condEspectationValues(m_simAndCell[im](0)) = BasisCoefficients(m_simAndCell[im](1));
return condEspectationValues;
}
ArrayXXd LocalSameSizeConstRegression::getAllSimulationsMultiple(const ArrayXXd &p_fToRegress) const
{
if (m_bZeroDate)
{
ArrayXXd ret(p_fToRegress.rows(), p_fToRegress.cols());
for (int ism = 0; ism < p_fToRegress.rows(); ++ism)
ret.row(ism).setConstant(p_fToRegress.row(ism).mean());
return ret;
}
// coefficients
ArrayXXd BasisCoefficients = ArrayXXd::Zero(p_fToRegress.rows(), m_matReg.size());
// second member
for (size_t i = 0; i < m_simAndCell.size(); ++i)
BasisCoefficients.col(m_simAndCell[i](1)) += p_fToRegress.col(m_simAndCell[i](0));
for (int im = 0; im < m_matReg.size(); ++im)
BasisCoefficients.col(im) /= m_matReg(im);
ArrayXXd condEspectationValues = ArrayXXd::Zero(p_fToRegress.rows(), p_fToRegress.cols());
for (size_t im = 0 ; im < m_simAndCell.size(); ++im)
condEspectationValues.col(m_simAndCell[im](0)) = BasisCoefficients.col(m_simAndCell[im](1));
return condEspectationValues;
}
double LocalSameSizeConstRegression::getValue(const ArrayXd &p_coordinates, const ArrayXd &p_coordBasisFunction) const
{
if (!m_bZeroDate)
{
// point location
int ipos = pointLocation(p_coordinates);
if (ipos < 0)
return 0. ;
else
return p_coordBasisFunction(ipos);
}
else
{
return p_coordBasisFunction(0);
}
}
double LocalSameSizeConstRegression::getAValue(const ArrayXd &p_coordinates, const ArrayXd &p_ptOfStock,
const vector< shared_ptr<InterpolatorSpectral> > &p_interpFuncBasis) const
{
if (!m_bZeroDate)
{
// point location
int ipos = pointLocation(p_coordinates);
if (ipos < 0)
return 0. ;
else
return p_interpFuncBasis[ipos]->apply(p_ptOfStock);
}
else
{
return p_interpFuncBasis[0]->apply(p_ptOfStock);
}
}
}
|