File: LocalSameSizeLinearRegression.cpp

package info (click to toggle)
stopt 5.12%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,860 kB
  • sloc: cpp: 70,456; python: 5,950; makefile: 72; sh: 57
file content (445 lines) | stat: -rw-r--r-- 14,654 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <vector>
#include <memory>
#include <iostream>
#include <Eigen/Dense>
#include "StOpt/regression/LocalSameSizeLinearRegression.h"
#include "StOpt/core/utils/constant.h"
#include "StOpt/core/grids/InterpolatorSpectral.h"
#include "StOpt/regression/localLinearMatrixOperation.h"

using namespace std;
using namespace Eigen;

namespace StOpt
{


LocalSameSizeLinearRegression::LocalSameSizeLinearRegression(const bool &p_bZeroDate,
        const ArrayXXd  &p_particles,
        const ArrayXd &p_lowValues,
        const ArrayXd &p_step,
        const  ArrayXi &p_nbStep) : LocalSameSizeRegression(p_bZeroDate, p_particles, p_lowValues, p_step, p_nbStep)
{
    if (!m_bZeroDate)
    {
        // regression matrix
        constructAndFactorize();
    }
}

LocalSameSizeLinearRegression:: LocalSameSizeLinearRegression(const   LocalSameSizeLinearRegression &p_object): LocalSameSizeRegression(p_object),
    m_matReg(p_object.getMatReg()), m_diagReg(p_object.getDiagReg()),
    m_bSingular(p_object.getBSingular())
{
    const  std::vector< std::shared_ptr< Eigen::MatrixXd > > &pseudoInverse = p_object.getPseudoInverse();
    m_pseudoInverse.resize(pseudoInverse.size());
    for (size_t i = 0 ; i < pseudoInverse.size(); ++i)
    {
        if (pseudoInverse[i])
            m_pseudoInverse[i] = make_shared<Eigen::MatrixXd>(*pseudoInverse[i]);
    }
}


void LocalSameSizeLinearRegression::constructAndFactorize()
{
    int nBase = m_particles.rows() + 1;
    int nbCell = m_nbMeshTotal;
    //to store fuction basis values
    ArrayXd FBase(nBase);

    // initialization
    m_matReg = ArrayXXd::Zero(nBase * nBase, nbCell);

    for (size_t i = 0; i <  m_simAndCell.size() ; ++i)
    {
        // simulation
        int isim = m_simAndCell[i](0);
        // cell number
        int icell = m_simAndCell[i](1) ;
        // calculate basis function values
        FBase(0) = 1;
        for (int id = 0 ; id < nBase - 1 ; id++)
        {

            int iposition = (m_particles(id, isim) - m_lowValues(id)) / m_step(id);
            double xPosMin =  m_lowValues(id) + iposition * m_step(id);
            FBase(id + 1) = (m_particles(id, isim) - xPosMin) / m_step(id);
            assert((FBase(id + 1) >= 0) && (FBase(id + 1) <= 1.)) ;
        }
        for (int k = 0 ; k < nBase ; ++k)
            for (int kk = k ; kk < nBase ; ++kk)
                m_matReg(k + kk * nBase, icell) += FBase(k) * FBase(kk);
    }

    // try to factorize by cholesky
    m_diagReg.resize(nBase, nbCell);
    m_bSingular.resize(nbCell);
    // try to factorize each matrix
    localLinearCholeski(m_matReg, m_diagReg, m_bSingular) ;
    // prepare pseudo factorizatiion
    m_pseudoInverse.resize(nbCell);
    for (int icell = 0 ; icell < nbCell; ++icell)
    {
        if (m_bSingular(icell))
        {
            // modified choleski to account for Singularity (Courrieu 2005 : Fast Computation of Moore-Penrose Inverse Matrices )
            // create the Choleski matrix
            MatrixXd factorized = MatrixXd::Zero(nBase, nBase);
            int iCol = -1;
            // iterate on columns
            for (int id = 0 ; id < nBase ; ++id)
            {
                iCol += 1;
                for (int jd = id ; jd < nBase ; ++jd)
                {
                    factorized(jd, iCol) = m_matReg(id + jd * nBase, icell);
                    for (int kd = 0; kd < iCol ; ++kd)
                        factorized(jd, iCol) -= factorized(id, kd) * factorized(jd, kd);
                }
                if (factorized(id, iCol) > tiny)
                {
                    factorized(id, iCol) = sqrt(factorized(id, iCol));
                    for (int jd = id + 1 ; jd < nBase ; ++jd)
                        factorized(jd, iCol) /= factorized(id, iCol);
                }
                else
                {
                    iCol -= 1 ;
                }
            }
            // construct small dimension matrix
            if (iCol >= 0)
            {
                MatrixXd facReduced = factorized.leftCols(iCol + 1);
                MatrixXd matRegInv = (facReduced.transpose() * facReduced).inverse();
                m_pseudoInverse[icell] = make_shared< MatrixXd >(nBase, nBase);
                *m_pseudoInverse[icell] = facReduced * matRegInv * matRegInv * facReduced.transpose();
            }

        }
    }
}

ArrayXd LocalSameSizeLinearRegression::secondMember(const ArrayXd &p_fToRegress) const
{
    int nBase = m_particles.rows() + 1;
    int nbCell = m_nbMeshTotal;
    //to store fuction basis values
    ArrayXd FBase(nBase);

    // initialization
    ArrayXd secMember = ArrayXd::Zero(nbCell * nBase);

    for (size_t i = 0; i <  m_simAndCell.size() ; ++i)
    {
        // simulation
        int isim = m_simAndCell[i](0);
        // cell number
        int icell = m_simAndCell[i](1) ;
        // calculate basis function values
        FBase(0) = 1;
        for (int id = 0 ; id < nBase - 1 ; id++)
        {

            int iposition = (m_particles(id, isim) - m_lowValues(id)) / m_step(id);
            double xPosMin = m_lowValues(id) + iposition * m_step(id);
            FBase(id + 1) = (m_particles(id, isim) - xPosMin) / m_step(id);
            assert((FBase(id + 1) >= 0) && (FBase(id + 1) <= 1.)) ;
        }
        int idec = icell * nBase;
        for (int id = 0 ; id < nBase ; ++id)
            secMember(idec + id) += p_fToRegress(isim) * FBase(id);
    }
    return secMember;
}

ArrayXd LocalSameSizeLinearRegression::inversion(const ArrayXd    &p_secMem) const
{
    int nBase = m_diagReg.rows();
    int nbCell = m_diagReg.cols();
    int iCell;
    ArrayXd solution(nBase * nbCell);
    for (iCell = 0 ; iCell < nbCell ; iCell++)
    {
        // if not singular
        if (m_bSingular(iCell))
        {
            if (m_pseudoInverse[iCell])
            {
                solution.matrix().segment(iCell * nBase, nBase) = (*m_pseudoInverse[iCell]) * p_secMem.matrix().segment(iCell * nBase, nBase);
            }
            else
            {
                // no particle on the cell
                for (int id = 0 ; id < nBase; ++id)
                    solution(iCell * nBase + id) = 0. ;
            }
        }
        else
        {
            for (int id = 0 ; id < nBase; ++id)
            {
                int iloc = iCell * nBase + id;
                double sum = p_secMem(iloc);
                for (int  kd = id - 1; kd >= 0; kd--) sum -=  m_matReg(id + kd * nBase, iCell) * solution(iCell * nBase + kd);
                solution(iloc) = sum / m_diagReg(id, iCell);
            }
            for (int id = nBase - 1; id >= 0; id--)
            {
                int iloc = iCell * nBase + id;
                double sum = solution(iloc) - m_matReg.matrix().col(iCell).segment(id * (nBase + 1) + 1, nBase - id - 1).transpose() * solution.matrix().segment(id + 1 + iCell * nBase, nBase - id - 1);
                solution(iloc) = sum / m_diagReg(id, iCell);
            }
        }
    }
    return solution;
}

ArrayXd  LocalSameSizeLinearRegression::reconstructionAllPoints(const ArrayXd &p_foncBasisCoef) const
{
    int nBase = m_particles.rows() + 1;
    int nbSimul = m_particles.cols();
    //to store fuction basis values
    ArrayXd FBase(nBase);

    // initialization
    ArrayXd solution = ArrayXd::Zero(nbSimul) ;

    for (size_t i = 0; i <  m_simAndCell.size() ; ++i)
    {
        // simulation
        int isim = m_simAndCell[i](0);
        // cell number
        int icell = m_simAndCell[i](1) ;
        // calculate basis function values
        FBase(0) = 1;
        for (int id = 0 ; id < nBase - 1 ; id++)
        {

            int iposition = (m_particles(id, isim) - m_lowValues(id)) / m_step(id);
            double xPosMin =  m_lowValues(id) + iposition * m_step(id);
            FBase(id + 1) = (m_particles(id, isim) - xPosMin) / m_step(id);
            assert((FBase(id + 1) >= 0) && (FBase(id + 1) <= 1.)) ;
        }
        int idec =  icell * nBase ;
        for (int id = 0 ; id < nBase ; ++id)
            solution(isim) += p_foncBasisCoef(idec + id) * FBase(id);
    }
    return solution;
}


double LocalSameSizeLinearRegression::reconstructionOnlyOnePoint(const ArrayXd   &p_coord, const int &p_cell, const ArrayXd &p_basisCoefficients) const
{
    int nBase =  p_coord.size() + 1 ;
    // initialization
    double  solution = 0 ;
    // basis
    ArrayXd FBase(nBase);
    // calculate basis function values
    FBase(0) = 1;
    for (int id = 0 ; id < nBase - 1 ; id++)
    {

        int iposition = (p_coord(id) - m_lowValues(id)) / m_step(id);
        double xPosMin =  m_lowValues(id) + iposition * m_step(id);
        FBase(id + 1) = (p_coord(id) - xPosMin) / m_step(id);
        assert((FBase(id + 1) >= 0) && (FBase(id + 1) <= 1.)) ;
    }
    int idec =  p_cell * nBase ;
    for (int id = 0 ; id < nBase ; ++id)
        solution += p_basisCoefficients(idec + id) * FBase(id);
    return solution;
}



void LocalSameSizeLinearRegression::updateSimulations(const bool &p_bZeroDate, const ArrayXXd  &p_particles)
{
    BaseRegression::updateSimulationsBase(p_bZeroDate, p_particles);
    if (!m_bZeroDate)
    {

        // update utilitary arrays
        fillInSimCell(m_particles);

        // construct matrix
        constructAndFactorize();
    }
}

ArrayXd LocalSameSizeLinearRegression::getCoordBasisFunction(const ArrayXd &p_fToRegress) const
{
    if (!m_bZeroDate)
    {
        ArrayXd secMem = secondMember(p_fToRegress);
        return inversion(secMem);
    }
    else
    {
        ArrayXd retAverage(1);
        retAverage(0) = p_fToRegress.mean();
        return retAverage;
    }
}

ArrayXXd LocalSameSizeLinearRegression::getCoordBasisFunctionMultiple(const ArrayXXd &p_fToRegress) const
{
    if (!m_bZeroDate)
    {
        ArrayXXd regFunc = ArrayXXd::Zero(p_fToRegress.rows(), m_diagReg.size());
        for (int nsm = 0; nsm < p_fToRegress.rows(); ++nsm)
        {
            ArrayXd secMem = secondMember(p_fToRegress.transpose().col(nsm));
            regFunc.row(nsm) = inversion(secMem).transpose();
        }
        return regFunc;
    }
    else
    {
        ArrayXXd retAverage(p_fToRegress.rows(), 1);
        for (int nsm = 0; nsm <  p_fToRegress.rows(); ++nsm)
            retAverage.row(nsm).setConstant(p_fToRegress.row(nsm).mean());
        return retAverage;
    }

}

ArrayXd LocalSameSizeLinearRegression::reconstruction(const ArrayXd &p_basisCoefficients) const
{
    if (!m_bZeroDate)
    {
        return reconstructionAllPoints(p_basisCoefficients) ;
    }
    else
        return ArrayXd::Constant(m_simToCell.size(), p_basisCoefficients(0));
}

ArrayXXd LocalSameSizeLinearRegression::reconstructionMultiple(const ArrayXXd &p_basisCoefficients) const
{
    if (!m_bZeroDate)
    {
        ArrayXXd ret(p_basisCoefficients.rows(), m_particles.cols());
        for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
        {
            ret.row(nsm) = reconstructionAllPoints(p_basisCoefficients.row(nsm).transpose()).transpose();
        }
        return ret ;
    }
    else
    {
        ArrayXXd retValue(p_basisCoefficients.rows(), m_particles.cols());
        for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
            retValue.row(nsm).setConstant(p_basisCoefficients(nsm, 0));
        return retValue ;
    }
}

double LocalSameSizeLinearRegression::reconstructionASim(const int &p_isim, const ArrayXd   &p_basisCoefficients) const
{
    if (!m_bZeroDate)
    {
        if (m_simToCell(p_isim) < 0)
            return 0;
        else
        {
            return reconstructionOnlyOnePoint(m_particles.col(p_isim), m_simToCell(p_isim), p_basisCoefficients);
        }
    }
    else
    {
        return p_basisCoefficients(0);
    }
}


ArrayXd LocalSameSizeLinearRegression::getAllSimulations(const ArrayXd &p_fToRegress) const
{
    if (m_bZeroDate)
        return ArrayXd::Constant(p_fToRegress.size(), p_fToRegress.mean());
    ArrayXd secMem = secondMember(p_fToRegress);
    ArrayXd coefBasis = inversion(secMem);
    return reconstructionAllPoints(coefBasis);
}

ArrayXXd LocalSameSizeLinearRegression::getAllSimulationsMultiple(const ArrayXXd &p_fToRegress) const
{
    if (m_bZeroDate)
    {
        ArrayXXd ret(p_fToRegress.rows(), p_fToRegress.cols());
        for (int ism = 0; ism < p_fToRegress.rows(); ++ism)
            ret.row(ism).setConstant(p_fToRegress.row(ism).mean());
        return ret;
    }
    // solution
    ArrayXXd regressedFunc(p_fToRegress.rows(), p_fToRegress.cols());

    for (int nsm = 0; nsm < p_fToRegress.rows(); ++nsm)
    {
        ArrayXd secMem = secondMember(p_fToRegress.transpose().col(nsm));
        ArrayXd coeffBasis = inversion(secMem);
        regressedFunc.row(nsm) = reconstructionAllPoints(coeffBasis).transpose();
    }
    return regressedFunc;
}

double LocalSameSizeLinearRegression::getValue(const ArrayXd &p_coordinates, const ArrayXd &p_coordBasisFunction) const
{
    if (!m_bZeroDate)
    {
        // point location
        int ipos = pointLocation(p_coordinates.array());
        if (ipos < 0)
            return 0. ;
        else
        {
            return reconstructionOnlyOnePoint(p_coordinates, ipos, p_coordBasisFunction);
        }
    }
    else
    {
        return p_coordBasisFunction(0);
    }
}

double LocalSameSizeLinearRegression::getAValue(const ArrayXd &p_coordinates,  const ArrayXd &p_ptOfStock,
        const vector< shared_ptr<InterpolatorSpectral> > &p_interpFuncBasis) const
{
    if (!m_bZeroDate)
    {
        // point location
        int ipos = pointLocation(p_coordinates);
        if (ipos < 0)
            return 0. ;
        else
        {
            int nBase =  m_particles.rows() + 1 ;
            // initialization
            double  solution = 0 ;
            // basis
            ArrayXd FBase(nBase);
            // calculate basis function values
            FBase(0) = 1;
            for (int id = 0 ; id < nBase - 1 ; id++)
            {

                int iposition = (p_coordinates(id) - m_lowValues(id)) / m_step(id);
                double xPosMin =  m_lowValues(id) + iposition * m_step(id);
                FBase(id + 1) = (p_coordinates(id) - xPosMin) / m_step(id);
            }
            int idec =  ipos * nBase ;
            for (int id = 0 ; id < nBase ; ++id)
                solution += p_interpFuncBasis[idec + id]->apply(p_ptOfStock) * FBase(id);
            return solution;
        }
    }
    else
    {
        return p_interpFuncBasis[0]->apply(p_ptOfStock);
    }
}
}