1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <vector>
#include <memory>
#include <iostream>
#include <Eigen/Dense>
#include "StOpt/regression/LocalSameSizeLinearRegression.h"
#include "StOpt/core/utils/constant.h"
#include "StOpt/core/grids/InterpolatorSpectral.h"
#include "StOpt/regression/localLinearMatrixOperation.h"
using namespace std;
using namespace Eigen;
namespace StOpt
{
LocalSameSizeLinearRegression::LocalSameSizeLinearRegression(const bool &p_bZeroDate,
const ArrayXXd &p_particles,
const ArrayXd &p_lowValues,
const ArrayXd &p_step,
const ArrayXi &p_nbStep) : LocalSameSizeRegression(p_bZeroDate, p_particles, p_lowValues, p_step, p_nbStep)
{
if (!m_bZeroDate)
{
// regression matrix
constructAndFactorize();
}
}
LocalSameSizeLinearRegression:: LocalSameSizeLinearRegression(const LocalSameSizeLinearRegression &p_object): LocalSameSizeRegression(p_object),
m_matReg(p_object.getMatReg()), m_diagReg(p_object.getDiagReg()),
m_bSingular(p_object.getBSingular())
{
const std::vector< std::shared_ptr< Eigen::MatrixXd > > &pseudoInverse = p_object.getPseudoInverse();
m_pseudoInverse.resize(pseudoInverse.size());
for (size_t i = 0 ; i < pseudoInverse.size(); ++i)
{
if (pseudoInverse[i])
m_pseudoInverse[i] = make_shared<Eigen::MatrixXd>(*pseudoInverse[i]);
}
}
void LocalSameSizeLinearRegression::constructAndFactorize()
{
int nBase = m_particles.rows() + 1;
int nbCell = m_nbMeshTotal;
//to store fuction basis values
ArrayXd FBase(nBase);
// initialization
m_matReg = ArrayXXd::Zero(nBase * nBase, nbCell);
for (size_t i = 0; i < m_simAndCell.size() ; ++i)
{
// simulation
int isim = m_simAndCell[i](0);
// cell number
int icell = m_simAndCell[i](1) ;
// calculate basis function values
FBase(0) = 1;
for (int id = 0 ; id < nBase - 1 ; id++)
{
int iposition = (m_particles(id, isim) - m_lowValues(id)) / m_step(id);
double xPosMin = m_lowValues(id) + iposition * m_step(id);
FBase(id + 1) = (m_particles(id, isim) - xPosMin) / m_step(id);
assert((FBase(id + 1) >= 0) && (FBase(id + 1) <= 1.)) ;
}
for (int k = 0 ; k < nBase ; ++k)
for (int kk = k ; kk < nBase ; ++kk)
m_matReg(k + kk * nBase, icell) += FBase(k) * FBase(kk);
}
// try to factorize by cholesky
m_diagReg.resize(nBase, nbCell);
m_bSingular.resize(nbCell);
// try to factorize each matrix
localLinearCholeski(m_matReg, m_diagReg, m_bSingular) ;
// prepare pseudo factorizatiion
m_pseudoInverse.resize(nbCell);
for (int icell = 0 ; icell < nbCell; ++icell)
{
if (m_bSingular(icell))
{
// modified choleski to account for Singularity (Courrieu 2005 : Fast Computation of Moore-Penrose Inverse Matrices )
// create the Choleski matrix
MatrixXd factorized = MatrixXd::Zero(nBase, nBase);
int iCol = -1;
// iterate on columns
for (int id = 0 ; id < nBase ; ++id)
{
iCol += 1;
for (int jd = id ; jd < nBase ; ++jd)
{
factorized(jd, iCol) = m_matReg(id + jd * nBase, icell);
for (int kd = 0; kd < iCol ; ++kd)
factorized(jd, iCol) -= factorized(id, kd) * factorized(jd, kd);
}
if (factorized(id, iCol) > tiny)
{
factorized(id, iCol) = sqrt(factorized(id, iCol));
for (int jd = id + 1 ; jd < nBase ; ++jd)
factorized(jd, iCol) /= factorized(id, iCol);
}
else
{
iCol -= 1 ;
}
}
// construct small dimension matrix
if (iCol >= 0)
{
MatrixXd facReduced = factorized.leftCols(iCol + 1);
MatrixXd matRegInv = (facReduced.transpose() * facReduced).inverse();
m_pseudoInverse[icell] = make_shared< MatrixXd >(nBase, nBase);
*m_pseudoInverse[icell] = facReduced * matRegInv * matRegInv * facReduced.transpose();
}
}
}
}
ArrayXd LocalSameSizeLinearRegression::secondMember(const ArrayXd &p_fToRegress) const
{
int nBase = m_particles.rows() + 1;
int nbCell = m_nbMeshTotal;
//to store fuction basis values
ArrayXd FBase(nBase);
// initialization
ArrayXd secMember = ArrayXd::Zero(nbCell * nBase);
for (size_t i = 0; i < m_simAndCell.size() ; ++i)
{
// simulation
int isim = m_simAndCell[i](0);
// cell number
int icell = m_simAndCell[i](1) ;
// calculate basis function values
FBase(0) = 1;
for (int id = 0 ; id < nBase - 1 ; id++)
{
int iposition = (m_particles(id, isim) - m_lowValues(id)) / m_step(id);
double xPosMin = m_lowValues(id) + iposition * m_step(id);
FBase(id + 1) = (m_particles(id, isim) - xPosMin) / m_step(id);
assert((FBase(id + 1) >= 0) && (FBase(id + 1) <= 1.)) ;
}
int idec = icell * nBase;
for (int id = 0 ; id < nBase ; ++id)
secMember(idec + id) += p_fToRegress(isim) * FBase(id);
}
return secMember;
}
ArrayXd LocalSameSizeLinearRegression::inversion(const ArrayXd &p_secMem) const
{
int nBase = m_diagReg.rows();
int nbCell = m_diagReg.cols();
int iCell;
ArrayXd solution(nBase * nbCell);
for (iCell = 0 ; iCell < nbCell ; iCell++)
{
// if not singular
if (m_bSingular(iCell))
{
if (m_pseudoInverse[iCell])
{
solution.matrix().segment(iCell * nBase, nBase) = (*m_pseudoInverse[iCell]) * p_secMem.matrix().segment(iCell * nBase, nBase);
}
else
{
// no particle on the cell
for (int id = 0 ; id < nBase; ++id)
solution(iCell * nBase + id) = 0. ;
}
}
else
{
for (int id = 0 ; id < nBase; ++id)
{
int iloc = iCell * nBase + id;
double sum = p_secMem(iloc);
for (int kd = id - 1; kd >= 0; kd--) sum -= m_matReg(id + kd * nBase, iCell) * solution(iCell * nBase + kd);
solution(iloc) = sum / m_diagReg(id, iCell);
}
for (int id = nBase - 1; id >= 0; id--)
{
int iloc = iCell * nBase + id;
double sum = solution(iloc) - m_matReg.matrix().col(iCell).segment(id * (nBase + 1) + 1, nBase - id - 1).transpose() * solution.matrix().segment(id + 1 + iCell * nBase, nBase - id - 1);
solution(iloc) = sum / m_diagReg(id, iCell);
}
}
}
return solution;
}
ArrayXd LocalSameSizeLinearRegression::reconstructionAllPoints(const ArrayXd &p_foncBasisCoef) const
{
int nBase = m_particles.rows() + 1;
int nbSimul = m_particles.cols();
//to store fuction basis values
ArrayXd FBase(nBase);
// initialization
ArrayXd solution = ArrayXd::Zero(nbSimul) ;
for (size_t i = 0; i < m_simAndCell.size() ; ++i)
{
// simulation
int isim = m_simAndCell[i](0);
// cell number
int icell = m_simAndCell[i](1) ;
// calculate basis function values
FBase(0) = 1;
for (int id = 0 ; id < nBase - 1 ; id++)
{
int iposition = (m_particles(id, isim) - m_lowValues(id)) / m_step(id);
double xPosMin = m_lowValues(id) + iposition * m_step(id);
FBase(id + 1) = (m_particles(id, isim) - xPosMin) / m_step(id);
assert((FBase(id + 1) >= 0) && (FBase(id + 1) <= 1.)) ;
}
int idec = icell * nBase ;
for (int id = 0 ; id < nBase ; ++id)
solution(isim) += p_foncBasisCoef(idec + id) * FBase(id);
}
return solution;
}
double LocalSameSizeLinearRegression::reconstructionOnlyOnePoint(const ArrayXd &p_coord, const int &p_cell, const ArrayXd &p_basisCoefficients) const
{
int nBase = p_coord.size() + 1 ;
// initialization
double solution = 0 ;
// basis
ArrayXd FBase(nBase);
// calculate basis function values
FBase(0) = 1;
for (int id = 0 ; id < nBase - 1 ; id++)
{
int iposition = (p_coord(id) - m_lowValues(id)) / m_step(id);
double xPosMin = m_lowValues(id) + iposition * m_step(id);
FBase(id + 1) = (p_coord(id) - xPosMin) / m_step(id);
assert((FBase(id + 1) >= 0) && (FBase(id + 1) <= 1.)) ;
}
int idec = p_cell * nBase ;
for (int id = 0 ; id < nBase ; ++id)
solution += p_basisCoefficients(idec + id) * FBase(id);
return solution;
}
void LocalSameSizeLinearRegression::updateSimulations(const bool &p_bZeroDate, const ArrayXXd &p_particles)
{
BaseRegression::updateSimulationsBase(p_bZeroDate, p_particles);
if (!m_bZeroDate)
{
// update utilitary arrays
fillInSimCell(m_particles);
// construct matrix
constructAndFactorize();
}
}
ArrayXd LocalSameSizeLinearRegression::getCoordBasisFunction(const ArrayXd &p_fToRegress) const
{
if (!m_bZeroDate)
{
ArrayXd secMem = secondMember(p_fToRegress);
return inversion(secMem);
}
else
{
ArrayXd retAverage(1);
retAverage(0) = p_fToRegress.mean();
return retAverage;
}
}
ArrayXXd LocalSameSizeLinearRegression::getCoordBasisFunctionMultiple(const ArrayXXd &p_fToRegress) const
{
if (!m_bZeroDate)
{
ArrayXXd regFunc = ArrayXXd::Zero(p_fToRegress.rows(), m_diagReg.size());
for (int nsm = 0; nsm < p_fToRegress.rows(); ++nsm)
{
ArrayXd secMem = secondMember(p_fToRegress.transpose().col(nsm));
regFunc.row(nsm) = inversion(secMem).transpose();
}
return regFunc;
}
else
{
ArrayXXd retAverage(p_fToRegress.rows(), 1);
for (int nsm = 0; nsm < p_fToRegress.rows(); ++nsm)
retAverage.row(nsm).setConstant(p_fToRegress.row(nsm).mean());
return retAverage;
}
}
ArrayXd LocalSameSizeLinearRegression::reconstruction(const ArrayXd &p_basisCoefficients) const
{
if (!m_bZeroDate)
{
return reconstructionAllPoints(p_basisCoefficients) ;
}
else
return ArrayXd::Constant(m_simToCell.size(), p_basisCoefficients(0));
}
ArrayXXd LocalSameSizeLinearRegression::reconstructionMultiple(const ArrayXXd &p_basisCoefficients) const
{
if (!m_bZeroDate)
{
ArrayXXd ret(p_basisCoefficients.rows(), m_particles.cols());
for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
{
ret.row(nsm) = reconstructionAllPoints(p_basisCoefficients.row(nsm).transpose()).transpose();
}
return ret ;
}
else
{
ArrayXXd retValue(p_basisCoefficients.rows(), m_particles.cols());
for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
retValue.row(nsm).setConstant(p_basisCoefficients(nsm, 0));
return retValue ;
}
}
double LocalSameSizeLinearRegression::reconstructionASim(const int &p_isim, const ArrayXd &p_basisCoefficients) const
{
if (!m_bZeroDate)
{
if (m_simToCell(p_isim) < 0)
return 0;
else
{
return reconstructionOnlyOnePoint(m_particles.col(p_isim), m_simToCell(p_isim), p_basisCoefficients);
}
}
else
{
return p_basisCoefficients(0);
}
}
ArrayXd LocalSameSizeLinearRegression::getAllSimulations(const ArrayXd &p_fToRegress) const
{
if (m_bZeroDate)
return ArrayXd::Constant(p_fToRegress.size(), p_fToRegress.mean());
ArrayXd secMem = secondMember(p_fToRegress);
ArrayXd coefBasis = inversion(secMem);
return reconstructionAllPoints(coefBasis);
}
ArrayXXd LocalSameSizeLinearRegression::getAllSimulationsMultiple(const ArrayXXd &p_fToRegress) const
{
if (m_bZeroDate)
{
ArrayXXd ret(p_fToRegress.rows(), p_fToRegress.cols());
for (int ism = 0; ism < p_fToRegress.rows(); ++ism)
ret.row(ism).setConstant(p_fToRegress.row(ism).mean());
return ret;
}
// solution
ArrayXXd regressedFunc(p_fToRegress.rows(), p_fToRegress.cols());
for (int nsm = 0; nsm < p_fToRegress.rows(); ++nsm)
{
ArrayXd secMem = secondMember(p_fToRegress.transpose().col(nsm));
ArrayXd coeffBasis = inversion(secMem);
regressedFunc.row(nsm) = reconstructionAllPoints(coeffBasis).transpose();
}
return regressedFunc;
}
double LocalSameSizeLinearRegression::getValue(const ArrayXd &p_coordinates, const ArrayXd &p_coordBasisFunction) const
{
if (!m_bZeroDate)
{
// point location
int ipos = pointLocation(p_coordinates.array());
if (ipos < 0)
return 0. ;
else
{
return reconstructionOnlyOnePoint(p_coordinates, ipos, p_coordBasisFunction);
}
}
else
{
return p_coordBasisFunction(0);
}
}
double LocalSameSizeLinearRegression::getAValue(const ArrayXd &p_coordinates, const ArrayXd &p_ptOfStock,
const vector< shared_ptr<InterpolatorSpectral> > &p_interpFuncBasis) const
{
if (!m_bZeroDate)
{
// point location
int ipos = pointLocation(p_coordinates);
if (ipos < 0)
return 0. ;
else
{
int nBase = m_particles.rows() + 1 ;
// initialization
double solution = 0 ;
// basis
ArrayXd FBase(nBase);
// calculate basis function values
FBase(0) = 1;
for (int id = 0 ; id < nBase - 1 ; id++)
{
int iposition = (p_coordinates(id) - m_lowValues(id)) / m_step(id);
double xPosMin = m_lowValues(id) + iposition * m_step(id);
FBase(id + 1) = (p_coordinates(id) - xPosMin) / m_step(id);
}
int idec = ipos * nBase ;
for (int id = 0 ; id < nBase ; ++id)
solution += p_interpFuncBasis[idec + id]->apply(p_ptOfStock) * FBase(id);
return solution;
}
}
else
{
return p_interpFuncBasis[0]->apply(p_ptOfStock);
}
}
}
|