1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
|
// Copyright (C) 2016 Jerome Lelong <jerome.lelong@imag.fr>
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifndef _MULTIVARIATEBASIS_H
#define _MULTIVARIATEBASIS_H
#include <Eigen/Dense>
#include <Eigen/Sparse>
#include <cassert>
/**
* \file MultiVariateBasis.h
* \brief Multivariate function bases for solving regression problems
* \author Jérôme Lelong
*/
namespace StOpt
{
/**
* \defgroup MultiVariateBasis Multivariate bases
* \brief It stores a family of multivariate functions defined as a tensor
* product of single variate functions. This class provides all the necessary
* methods for solving regression problems.
* @{
*/
/**\brief Integer Matrix in row major order */
typedef Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> RowMatrixXi;
/**\brief Sparse integer Matrix in row major order */
typedef Eigen::SparseMatrix<int, Eigen::RowMajor> RowSparseMatrix;
/**
* \class ComputeDegree
* \brief Abstract class to compute the p_total degree
*/
class ComputeDegree
{
public:
virtual ~ComputeDegree() {}
/**
* \brief Compute the tensor representation of the given basis
* \param p_nVariates the number of variates
* \param p_degree the maximum p_total degree
*/
virtual RowMatrixXi computeTensor(int p_nVariates, int p_degree) const;
protected:
/**
* \brief Compute the p_total degree of a row
* \param p_tensor a Tensor
* \param p_row a line number
*/
virtual int count(const RowMatrixXi &p_tensor, int p_row) const = 0;
/**
* \brief Compute the maximum p_partial degree which can be added in order
* not to go over the specified p_total degree given the running p_total
* degree
* \param p_total maximum p_total degree
* \param p_partial p_partial degree sofar
*/
virtual int freedom(int p_total, int p_partial) const = 0;
/**
* \brief Compute the number of elements with p_total degree less or equal than degree
* in the basis with (p_tensor->n + 1) variates
*
* \param p_tensor the tensor matrix of the basis with n-1 variates
* \param p_degree the maximum p_total degree requested
*
* \return the number of elements with p_total degree less or equal than degree in
* the basis with n variates
*/
int computeNumberOfElements(const RowMatrixXi &p_tensor, int p_degree) const;
/**
* \brief Copy T_prev(T_previ, :) into p_tensor(Ti,:)
*
* \param p_tensor an integer matrix with more columns than that T_prev
* \param p_previousTensor an integer matrix containing the last tensor computed
* \param p_tensorRow the index of the line to consider in p_tensor
* \param p_previousTensorRow the index of the line to consider in T_prev
*
*/
void copyPreviousTensor(RowMatrixXi &p_tensor, const RowMatrixXi &p_previousTensor, int p_tensorRow, int p_previousTensorRow) const;
};
/**
* \class ComputeDegreeSum
* \brief The p_total degree is the sum of the p_partial degrees
*/
class ComputeDegreeSum : public ComputeDegree
{
protected:
/**
* \brief Compute the p_total degree of a row
* \param p_tensor a Tensor
* \param p_row a line number
*/
virtual int count(const RowMatrixXi &p_tensor, int p_row) const;
/**
* \brief Compute the maximum p_partial degree which can be added in order
* not to go over the specified p_total degree given the running p_total
* degree
* \param p_total maximum p_total degree
* \param p_partial p_partial degree sofar
*/
virtual int freedom(int p_total, int p_partial) const;
};
/**
* \class ComputeDegreeProd
* \brief The p_total degree is the product of the p_partial degrees. More
* precisely,
* - if not all the p_partial degrees are zero, total_degree= Prod(max(partial_degree, 1))
* - if all the p_partial degrees are zero, total_degree = 0
*/
class ComputeDegreeProd : public ComputeDegree
{
protected:
/**
* \brief Compute the p_total degree of a row
* \param p_tensor a Tensor
* \param p_row a line number
*/
virtual int count(const RowMatrixXi &p_tensor, int p_row) const;
/**
* \brief Compute the maximum p_partial degree which can be added in order
* not to go over the specified p_total degree given the running p_total
* degree
* \param p_total maximum p_total degree
* \param p_partial p_partial degree sofar
*/
virtual int freedom(int p_total, int p_partial) const;
};
/**
* \class ComputeDegreeHyperbolic
* \brief The p_total degree is the result of an hyperbolic semi-norm
* total_degree = (sum(partial_degree^q)^(1/q)
*/
class ComputeDegreeHyperbolic : public ComputeDegreeSum
{
private:
double m_q;
/**
* \brief Compute the p_total degree of a row
* \param p_tensor a Tensor
* \param p_row a line number
*/
virtual double hyperbolicCount(const RowMatrixXi &p_tensor, int p_row) const;
public:
ComputeDegreeHyperbolic();
/**
* \brief Create an instance of the DegreeHyperbolic class
* \param p_q the hyperbolic order must be between 0 and 1 to have a sparse
* representation
*/
explicit ComputeDegreeHyperbolic(double p_q);
/**
* \brief Compute the tensor representation of the given basis
* \param p_nVariates the number of variates
* \param p_degree the maximum p_total degree
*/
virtual RowMatrixXi computeTensor(int p_nVariates, int p_degree) const;
};
/**
* \class MultiVariateBasis
* \brief Implement a family of multi-variate functions, each of them being a
* tensor product of single variate functions.
*
* \tparam Func1D A class of 1D functions, which must provide the three
* following methods
* - F(double, int) to evaluate the 1d function
* - DF(double, int) to evaluate the first derivative of the 1d function
* - D2F(double, int) to evaluate the second derivative of the 1d function
*/
template <class ClassFunc1D> class MultiVariateBasis
{
private:
ClassFunc1D m_func1D; /*!< Base 1D family */
int m_numberOfVariates; /*!< number of variates */
int m_numberOfFunctions; /*!< number of elements in the basis */
RowMatrixXi m_tensorFull; /*<! Full Basis representation with size m_numberOfFunctions x m_numberOfVariates */
RowSparseMatrix m_tensorSparse;/*<! Sparse Basis representation with size m_numberOfFunctions x m_numberOfVariates */
bool m_isReduced; /* true if the basis is reduced */
Eigen::ArrayXd m_center; /*!< center of the domain */
Eigen::ArrayXd m_scale; /*<! inverse of the scaling factor to map the domain to [-1, 1]^nb_variates */
public:
MultiVariateBasis(): m_numberOfVariates(0), m_numberOfFunctions(0), m_isReduced(false) { }
/**
* \brief Create a multi-variate basis
* \param p_degreeFunction a derived class from ComputeDegree
* \param p_dimension the number of variates
* \param p_degree the maximum p_total degree
*/
MultiVariateBasis(const ComputeDegree &p_degreeFunction, int p_dimension, int p_degree)
{
m_numberOfVariates = p_dimension;
m_isReduced = false;
m_tensorFull = p_degreeFunction.computeTensor(p_dimension, p_degree);
m_numberOfFunctions = m_tensorFull.rows();
m_tensorSparse = m_tensorFull.sparseView();
m_center = Eigen::ArrayXd(p_dimension);
m_center.setZero();
m_scale = Eigen::ArrayXd(p_dimension);
m_scale.setOnes();
}
/**
* \brief Create a multi-variate basis
* \param p_numberOfVariates number of variates
* \param p_numberOfFunctions number of elements in the basis
* \param p_tensorFull Full Basis representation with size p_numberOfFunctions x p_numberOfVariates
* \param p_tensorSparse Sparse Basis representation with size p_numberOfFunctions x p_numberOfVariates
* \param p_isReduced true if the basis is reduced
* \param p_center center of the domain
* \param p_scale inverse of the scaling factor to map the domain to [-1, 1]^nb_variates
*/
MultiVariateBasis(const int &p_numberOfVariates, const int &p_numberOfFunctions, const RowMatrixXi &p_tensorFull, const RowSparseMatrix &p_tensorSparse,
const bool &p_isReduced, const Eigen::ArrayXd &p_center, const Eigen::ArrayXd &p_scale): m_numberOfVariates(p_numberOfVariates),
m_numberOfFunctions(p_numberOfFunctions), m_tensorFull(p_tensorFull), m_tensorSparse(p_tensorSparse), m_isReduced(p_isReduced), m_center(p_center), m_scale(p_scale)
{ }
/**
* \brief Print a Basis to a stream
*
* \param p_os an output stream
* \param p_basis the basis to be printed out
*/
friend std::ostream &operator<<(std::ostream &p_os, const MultiVariateBasis &p_basis)
{
p_os << "Number of Variates " << p_basis.getNumberOfVariates() << std::endl;
p_os << "Number of Functions " << p_basis.getNumberOfFunctions() << std::endl;
p_os << "Tensor Full" << std::endl << p_basis.m_tensorFull << std::endl;
p_os << "Tensor Sparse" << std::endl << p_basis.m_tensorSparse << std::endl;
return p_os;
}
/**
* \brief Return the number of functions
*/
inline int getNumberOfFunctions() const
{
return m_numberOfFunctions;
}
/**
* \brief Return the number of variates
*/
inline int getNumberOfVariates() const
{
return m_numberOfVariates;
}
/**
* \brief Return the full tensor representation
*/
inline const RowMatrixXi &getTensorFull() const
{
return m_tensorFull;
}
/**
* \brief Return the sparse tensor representation
*/
inline const RowSparseMatrix &getTensorSparse() const
{
return m_tensorSparse;
}
/**
* \brief Return if the base is reduced
*/
inline const bool &getIsReduced() const
{
return m_isReduced;
}
/**
* \brief Return the center
*/
inline const Eigen::ArrayXd &getCenter() const
{
return m_center;
}
/**
* \brief Return the scale
*/
inline const Eigen::ArrayXd &getScale() const
{
return m_scale;
}
/**
* \brief Make the basis use a reduced domain using the mapping
* \f$ p_x \in D \mapsto \left(\frac{x_i - center_i}{scale_i}\right)_i \f$
*
* \param p_center center of the domain
* \param p_scale width of the domain
*/
void setReduced(const Eigen::ArrayXd &p_center, const Eigen::ArrayXd &p_scale)
{
assert(p_center.rows() == p_scale.rows());
assert(p_center.rows() == m_numberOfVariates);
m_center = p_center;
m_scale = 1. / p_scale;
m_isReduced = true;
}
/**
* \brief Make the basis use a reduced domain using the mapping
* \f$ p_x \in D \mapsto \left(\frac{x_i - (a_i + b_i)/2}{(b_i - a_i)/2}\right)_i \f$
* The domain [a, b] is mapped to [-1,1]^d
*
* \param p_lower lower bound a of the domain
* \param p_upper upper bound b of the domain
*/
void setDomain(const Eigen::ArrayXd &p_lower, const Eigen::ArrayXd &p_upper)
{
assert(p_lower.rows() == p_upper.rows());
assert(p_lower.rows() == m_numberOfVariates);
m_center = (p_lower + p_upper) / 2;
m_scale = 2. / (p_upper - p_lower);
m_isReduced = true;
}
/**
* \brief Evalute the i-th basis function at the point p_x
*
* \param p_x evaluation point
* \param p_i index of the function to evaluate between 0 and m_numberOfFunctions - 1
*/
double operator()(const Eigen::ArrayXd &p_x, int p_i) const
{
assert(p_i >= 0 && p_i < getNumberOfFunctions());
double aux = 1.;
for (RowSparseMatrix::InnerIterator it(m_tensorSparse, p_i); it; ++it)
{
const int k = it.col();
const int Tik = it.value();
aux *= m_func1D.F((p_x(k) - m_center(k)) * m_scale(k), Tik);
}
return aux;
}
/**
* \brief An element of a basis writes as a product
* p_1(x_1) p2(x_2) .... p_n(x_n)
* for a polynomial with n variates, where each p_k is a polynomial
* with only one variate.
*
* This functions evaluates the term p_k of the i-th element of the
* basis at the point p_x
*
* \param p_x evaluation point
* \param p_i index of the function to evaluate between 0 and m_numberOfFunctions - 1
* \param p_k index of the variate between 0 and m_numberOfVariates - 1
*/
double operator()(const Eigen::ArrayXd &p_x, int p_i, int p_k) const
{
assert(p_i >= 0 && p_i < getNumberOfFunctions());
assert(p_k >= 0 && p_k < getNumberOfVariates());
const int Tik = m_tensorFull(p_i, p_k);
if (Tik == 0) return 1.;
return m_func1D.F((p_x(p_k) - m_center(p_k)) * m_scale(p_k), Tik);
}
/**
* \brief An element of a basis writes as a product
* p_1(x_1) p2(x_2) .... p_n(x_n)
* for a polynomial with n variates, where each p_k is a polynomial with only one variate.
*
* This functions evaluates the term p_k of the i-th element of the basis at the point p_x
*
* \param p_x evaluation point
* \param p_i index of the function to evaluate between 0 and m_numberOfFunctions - 1
* \param p_k index of the variate between 0 and m_numberOfVariates - 1
*
* See #operator()(const Eigen::ArrayXd &p_x, int p_i, int p_k) const
*/
inline double eval(const Eigen::ArrayXd &p_x, int p_i, int p_k) const
{
return operator()(p_x, p_i, p_k);
}
/**
* \brief Evalute the i-th basis function at the point p_x
*
* \param p_x evaluation point
* \param p_i index of the function to evaluate between 0 and m_numberOfFunctions - 1
*
* See #operator()(const Eigen::ArrayXd &p_x, int p_i) const
*/
inline double eval(const Eigen::ArrayXd &p_x, int p_i) const
{
return operator()(p_x, p_i);
}
/**
* \brief Evaluate the linear combination of the basis functions given by
* p_basisCoordinates at the point p_x
*
* \param p_x evaluation point
* \param p_basisCoordinates coefficients of the linear combination
*
*/
double eval(const Eigen::ArrayXd &p_x, const Eigen::ArrayXd &p_basisCoordinates) const
{
assert(p_basisCoordinates.size() == getNumberOfFunctions());
assert(p_x.size() == getNumberOfVariates());
double res = 0.;
for (int i = 0; i < p_basisCoordinates.size(); i++)
{
const double alpha_i = p_basisCoordinates(i);
res += operator()(p_x, i) * alpha_i;
}
return res;
}
/**
* \brief Evaluate all the basis functions at the point p_x and return
* the values in a vector. The returned vector has size NumberOfFunctions.
*
* \param p_x evaluation point
*/
Eigen::ArrayXd eval(const Eigen::ArrayXd &p_x) const
{
assert(p_x.size() == getNumberOfVariates());
Eigen::ArrayXd res(getNumberOfFunctions());
for (int i = 0; i < getNumberOfFunctions(); i++)
{
res(i) = operator()(p_x, i);
}
return res;
}
/**
* \brief Compute the first order partial derivative of the i-th function
* with respect to the j-th variable
*
* \param p_x evaluation point
* \param p_i index of the function between 0 and m_numberOfFunctions - 1
* \param p_j index of the partial derivative between 0 and m_numberOfVariates - 1
*
* \return (D(f_i)/Dj)(p_x)
*/
double evalD(const Eigen::ArrayXd &p_x, int p_i, int p_j) const
{
assert(p_x.size() == getNumberOfVariates());
assert(p_i >= 0 && p_i < getNumberOfFunctions());
assert(p_j >= 0 && p_j < getNumberOfVariates());
if (m_tensorFull(p_i, p_j) == 0) return 0.;
double aux = 1.;
for (RowSparseMatrix::InnerIterator it(m_tensorSparse, p_i); it; ++it)
{
const int k = it.col();
const int Tik = it.value();
if (k == p_j)
aux *= m_scale(k) * m_func1D.DF((p_x(k) - m_center(k)) * m_scale(k), Tik);
else
aux *= m_func1D.F((p_x(k) - m_center(k)) * m_scale(k), Tik);
}
return aux;
}
/**
* \brief Compute the second order partial derivative of the i-th function
* with respect to the j1-th and j2-th variables
*
* \param p_x evaluation point
* \param p_i index of the function between 0 and m_numberOfFunctions - 1
* \param p_j1 index of the first partial derivative between 0 and m_numberOfVariates - 1
* \param p_j2 index of the second partial derivative between 0 and m_numberOfVariates - 1
*
* \return (D(f_i)/(Dj1 Dj2))(p_x)
*/
double evalD2(const Eigen::ArrayXd &p_x, int p_i, int p_j1, int p_j2) const
{
assert(p_x.size() == getNumberOfVariates());
assert(p_i >= 0 && p_i < getNumberOfFunctions());
assert(p_j1 >= 0 && p_j1 < getNumberOfVariates());
assert(p_j2 >= 0 && p_j2 < getNumberOfVariates());
if ((m_tensorFull(p_i, p_j1) == 0) || (m_tensorFull(p_i, p_j2) == 0)) return 0.;
double res = 1.;
for (RowSparseMatrix::InnerIterator it(m_tensorSparse, p_i); it; ++it)
{
const int k = it.col();
const int Tik = it.value();
if ((p_j1 == p_j2) && (k == p_j1))
res *= m_scale(k) * m_scale(k) * m_func1D.D2F((p_x(k) - m_center(k)) * m_scale(k), Tik);
else if ((p_j1 != p_j2) && ((k == p_j1) || (k == p_j2)))
res *= m_scale(k) * m_func1D.DF((p_x(k) - m_center(k)) * m_scale(k), Tik);
else
res *= m_func1D.F((p_x(k) - m_center(k)) * m_scale(k), Tik);
}
return res;
}
/**
* \brief Compute the first order partial derivative with respect to the j-th variable of the
* linear combination given by p_basisCoordinates.
*
* \param p_x evaluation point
* \param p_basisCoordinates weights of the decomposition
* \param p_j index of the partial derivative between 0 and m_numberOfVariates - 1
*
*/
double evalD(const Eigen::ArrayXd &p_x, const Eigen::ArrayXd &p_basisCoordinates, int p_j) const
{
assert(p_x.size() == getNumberOfVariates());
assert(p_basisCoordinates.size() == getNumberOfFunctions());
assert(p_j >= 0 && p_j < getNumberOfVariates());
double res = 0.;
for (int i = 0; i < p_basisCoordinates.size(); i++)
{
const double alpha_i = p_basisCoordinates(i);
res += evalD(p_x, i, p_j) * alpha_i;
}
return res;
}
/**
* \brief Compute the gradient of the linear combination given by p_basisCoordinates.
*
* \param p_x evaluation point
* \param p_basisCoordinates weights of the decomposition
* \param[out] p_dfx the gradient vector on output
*/
void evalGradient(const Eigen::ArrayXd &p_x, const Eigen::ArrayXd &p_basisCoordinates, Eigen::ArrayXd &p_dfx) const
{
assert(p_x.size() == getNumberOfVariates());
assert(p_basisCoordinates.size() == getNumberOfFunctions());
p_dfx.resize(getNumberOfVariates());
p_dfx.setZero();
for (int i = 0; i < p_basisCoordinates.size(); i++)
{
const double alpha_i = p_basisCoordinates(i);
for (int j = 0; j < getNumberOfVariates(); j++)
{
p_dfx(j) += evalD(p_x, i, j) * alpha_i;
}
}
}
/**
* \brief Compute the second order partial derivative with respect to the j1-th and j2-th
* variables of the linear combination given by p_basisCoordinates.
*
* \param p_x evaluation point
* \param p_basisCoordinates weights of the decomposition
* \param p_j1 index of the first partial derivative between 0 and m_numberOfVariates - 1
* \param p_j2 index of the second partial derivative between 0 and m_numberOfVariates - 1
*
*/
double evalD2(const Eigen::ArrayXd &p_x, const Eigen::ArrayXd &p_basisCoordinates, int p_j1, int p_j2) const
{
assert(p_basisCoordinates.size() == getNumberOfFunctions());
double res = 0.;
for (int i = 0; i < p_basisCoordinates.size(); i++)
{
const double alpha_i = p_basisCoordinates(i);
res += evalD2(p_x, i, p_j1, p_j2) * alpha_i;
}
return res;
}
/**
* \brief Compute the gradient of the linear combination given by p_basisCoordinates.
*
* \param p_x evaluation point
* \param p_basisCoordinates weights of the decomposition
* \param[out] p_d2fx the Hessian matrix on output
*/
void evalHessian(const Eigen::ArrayXd &p_x, const Eigen::ArrayXd &p_basisCoordinates, Eigen::ArrayXXd &p_d2fx) const
{
assert(p_basisCoordinates.size() == getNumberOfFunctions());
p_d2fx.resize(getNumberOfVariates(), getNumberOfVariates());
p_d2fx.setZero();
for (int i = 0; i < p_basisCoordinates.size(); i++)
{
const double alpha_i = p_basisCoordinates(i);
for (int j = 0; j < getNumberOfVariates(); j++)
{
for (int l = 0; l <= j; l++)
{
p_d2fx(j, l) += evalD2(p_x, i, j, l) * alpha_i;
p_d2fx(l, j) = p_d2fx(j, l);
}
}
}
// Make d2fx symmetric by copying the lower triangle into the upper one.
p_d2fx.matrix().triangularView<Eigen::StrictlyUpper>() = p_d2fx.matrix().triangularView<Eigen::StrictlyLower>().transpose();
}
/**
* \brief Compute the gradient and the Hessian matrix of the linear
* combination given by p_basisCoordinates
*
* \param p_x the evaluation point
* \param p_basisCoordinates the coefficients of the linear combination
* \param[out] p_fx contains the function value on output
* \param[out] p_dfx the gradient vector on output
* \param[out] p_d2fx the Hessian matrix on output
*/
void evalDerivatives(const Eigen::ArrayXd &p_x, const Eigen::ArrayXd &p_basisCoordinates, double &p_fx, Eigen::ArrayXd &p_dfx, Eigen::ArrayXXd &p_d2fx) const
{
assert(p_basisCoordinates.size() == getNumberOfFunctions());
int nVariates = getNumberOfVariates();
p_fx = 0.;
p_dfx.resize(nVariates);
p_dfx.setZero();
p_d2fx.resize(nVariates, nVariates);
p_d2fx.setZero();
Eigen::ArrayXd f(nVariates);
Eigen::ArrayXd Df(nVariates);
for (int i = 0; i < p_basisCoordinates.size(); i++)
{
double auxf = 1.;
const double alpha_i = p_basisCoordinates(i);
f.setZero();
Df.setZero();
for (RowSparseMatrix::InnerIterator it(m_tensorSparse, i); it; ++it)
{
const int k = it.col();
const int Tik = it.value();
f(k) = m_func1D.F((p_x(k) - m_center(k)) * m_scale(k), Tik);
auxf *= f(k);
}
p_fx += alpha_i * auxf;
for (int j = 0; j < nVariates; j++)
{
auxf = 1.;
for (RowSparseMatrix::InnerIterator it(m_tensorSparse, i); it; ++it)
{
const int k = it.col();
if (k != j) auxf *= f(k);
}
const int Tij = m_tensorFull(i, j);
// Gradient
Df(j) = m_scale(j) * m_func1D.DF((p_x(j) - m_center(j)) * m_scale(j), Tij);
p_dfx(j) += alpha_i * Df(j) * auxf;
// Diagonal terms of the Hessian matrix
p_d2fx(j, j) += alpha_i * m_scale(j) * m_scale(j) * m_func1D.D2F((p_x(j) - m_center(j)) * m_scale(j), Tij) * auxf;
for (int l = 0; l < j ; l++)
{
auxf = 1.;
for (RowSparseMatrix::InnerIterator it(m_tensorSparse, i); it; ++it)
{
const int k = it.col();
if ((k != j) && (k != l)) auxf *= f(k);
}
p_d2fx(j, l) += alpha_i * Df(j) * Df(l) * auxf;
}
}
}
p_d2fx.matrix().triangularView<Eigen::StrictlyUpper>() = p_d2fx.matrix().triangularView<Eigen::StrictlyLower>().transpose();
}
/**
* \brief Find the best least square approximation of the function defined
* by f(p_x(i,:)) = fx(i) on the MultiViariateBasis
*
* \param[out] p_basisCoordinates contains on exit the coefficients of the regression
* \param p_x the matrix of points at which we know the value of the
* function. One column of the matrix corresponds to the coordinates of
* one point. The matrix p_x has size dim p_x NumberOfPoints
* \param p_fx the values of the function f at the points defined by p_x
*/
void fitLeastSquare(Eigen::ArrayXd &p_basisCoordinates, const Eigen::ArrayXXd &p_x, const Eigen::ArrayXd &p_fx) const
{
assert(p_x.cols() == p_fx.size());
assert(p_x.rows() == getNumberOfVariates());
int nFunctions = getNumberOfFunctions();
p_basisCoordinates.resize(nFunctions);
p_basisCoordinates.setZero();
#ifdef _OPENMP
int nbThread = omp_get_max_threads();
#else
int nbThread = 1 ;
#endif
Eigen::MatrixXd phi_k(nFunctions, nbThread);
Eigen::MatrixXd b(nFunctions, nbThread);
int i;
#ifdef _OPENMP
#pragma omp parallel for private(i)
#endif
for (i = 0 ; i < nbThread; ++i)
{
phi_k.col(i).setZero();
b.col(i).setZero();
}
std::vector<Eigen::MatrixXd> A(nbThread);
for (int it = 0; it < nbThread; ++it)
A[it].resize(nFunctions, nFunctions);
#ifdef _OPENMP
#pragma omp parallel for private(i)
#endif
for (i = 0 ; i < nbThread; ++i)
A[i].setZero();
/* construct A and b*/
#ifdef _OPENMP
#pragma omp parallel for private(i)
#endif
for (i = 0; i < p_fx.size(); i++)
{
#ifdef _OPENMP
int ithread = omp_get_thread_num();
#else
int ithread = 0;
#endif
for (int k = 0; k < nFunctions; k++)
{
const double tmp = eval(p_x.col(i), k);
b(k, ithread) += tmp * p_fx(i);
phi_k(k, ithread) = tmp;
}
/* A += phi_k' * phi_k */
A[ithread] += phi_k.col(ithread) * phi_k.col(ithread).transpose();
}
// collapse AThread
for (int it = 1 ; it < nbThread; ++it)
{
A[0] += A[it];
b.col(0) += b.col(it);
}
/* Because A often comes from simulation, A is not >0. So we use a
* least-square approach
*/
p_basisCoordinates = A[0].colPivHouseholderQr().solve(b.col(0));
}
};
/**@}*/
}
#endif /* _MULTIVARIATEBASIS_H */
|