File: SparseRegression.cpp

package info (click to toggle)
stopt 5.12%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,860 kB
  • sloc: cpp: 70,456; python: 5,950; makefile: 72; sh: 57
file content (532 lines) | stat: -rw-r--r-- 20,165 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <memory>
#include "StOpt/regression/SparseRegression.h"
#include "StOpt/core/sparse/sparseGridNoBound.h"
#include "StOpt/core/utils/choleskiFunctionsVariants.h"

using namespace Eigen;
using namespace std;

namespace StOpt
{

SparseRegression::SparseRegression(const int &p_levelMax, const ArrayXd &p_weight, const int &p_degree, bool p_bNoRescale):
    BaseRegression(false), m_spGrid(new SparseSpaceGridNoBound(p_levelMax, p_weight, p_degree)), m_mesh(p_weight.size()),
    m_bNoRescale(p_bNoRescale)
{
}

SparseRegression::SparseRegression(const bool &p_bZeroDate,
                                   const ArrayXXd &p_particles,
                                   const int &p_levelMax, const ArrayXd &p_weight, const int &p_degree):
    BaseRegression(p_bZeroDate, p_particles, false), m_spGrid(new SparseSpaceGridNoBound(p_levelMax, p_weight, p_degree)), m_mesh(p_weight.size()), m_bNoRescale(false)
{
    if (!p_bZeroDate)
        createAndFactorize(p_levelMax, p_weight, p_degree);

}

SparseRegression::SparseRegression(const bool &p_bZeroDate, shared_ptr< SparseSpaceGridNoBound>  p_spGrid,  const vector< vector< double> > &p_mesh, const   ArrayXd &p_meanX,
                                   const   ArrayXd   &p_etypX, const   MatrixXd   &p_svdMatrix):
    BaseRegression(p_bZeroDate, p_meanX,  p_etypX,  p_svdMatrix, false), m_spGrid(p_spGrid), m_mesh(p_mesh), m_bNoRescale(false)
{
    // fill in function basis
    createBasisFunctionNoBound(m_spGrid->getLevelMax(), m_spGrid->getWeight(), m_spGrid->getDegree(), m_functionScal);

}

void SparseRegression::updateSimulations(const bool &p_bZeroDate, const Eigen::ArrayXXd &p_particles)
{
    BaseRegression::updateSimulationsBase(p_bZeroDate, p_particles);
    if (!p_bZeroDate)
        createAndFactorize(m_spGrid->getLevelMax(), m_spGrid->getWeight(), m_spGrid->getDegree());

}

void SparseRegression::createAndFactorize(const int &p_levelMax, const ArrayXd &p_weight, const int &p_degree)
{
    // fill in function basis
    createBasisFunctionNoBound(p_levelMax, p_weight, p_degree, m_functionScal);
    // transform particles to unit square
    m_partRescaled.resize(m_particles.rows(), m_particles.cols());
    if (m_bNoRescale)
        rescale(p_weight);
    else
        transformToUnitSquare(p_levelMax, p_weight);
    // calculate regression matrix
    MatrixXd uReg(m_spGrid->getNbPoints(), m_spGrid->getNbPoints());
    m_yReg.resize(m_spGrid->getNbPoints(), m_spGrid->getNbPoints());
    MatrixXd matReg(m_spGrid->getNbPoints(), m_spGrid->getNbPoints());
    fillInRegressionMatrix(matReg);
    // apriori not a singular matrix
    m_bSingular = false ;
    recurChol(matReg,  uReg, m_yReg, m_bSingular);
    if (m_bSingular)
        pseudoInverseFac(uReg, m_yReg, m_llt);
    else
    {
        // directly factorize the matrix
        m_yReg.resize(0, 0);
        m_llt.compute(matReg);
    }
}

void SparseRegression::rescaleAParticle(const Ref< const ArrayXd>  p_aParticle, Ref< ArrayXd>  p_aPartRescaled)const
{
    for (int id = 0; id < p_aParticle.size(); ++id)
    {
        double aleaInit = p_aParticle(id);
        int ipos = 1    ;
        while ((aleaInit > m_mesh[id][ipos]) && (ipos < (static_cast<int>(m_mesh[id].size()) - 1)))
            ipos += 1 ;
        p_aPartRescaled(id) = min(max((((aleaInit - m_mesh[id][ipos - 1]) / (m_mesh[id][ipos] - m_mesh[id][ipos - 1])) + (ipos - 1)) / (m_mesh[id].size() - 1), 0.), 1.) ;
        assert(p_aPartRescaled(id) >= -1e-9);
        assert(p_aPartRescaled(id) <= 1. + 1e-9);
    }
}

void SparseRegression::transformToUnitSquare(const int &p_levelMax,  const ArrayXd &p_weight)
{
    int nbSimul = m_particles.cols();
    // mesh
    for (int id = 0 ; id < p_weight.size(); ++id)
    {
        // calculate level max for that dimension
        int initLevel = static_cast<int>(p_levelMax / p_weight(id));
        // Below the size of the mesh is choosen equal to the nodal support size
        int nbMesh = pow(2., initLevel - 1); // nb of meshes on last level (dimension 1)
        // resize to store mesh position
        m_mesh[id].resize(nbMesh + 1);
        // now rescale the uncertainties in [0,1] with linear interpolation of the Cumulative distribution
        // such that all meshes have roughtly the same number of particules
        // use the meshing p above the very local meshing
        int nsimulPerStep = nbSimul / nbMesh;
        vector<double> vecToSort(nbSimul);
        for (int is = 0 ; is <  nbSimul ; ++is)
            vecToSort[is] = m_particles(id, is);
        vector<double>::iterator startD = vecToSort.begin();
        int iFirstStep = 0;
        int iLastStep = 1;
        for (int istep = 0 ; istep  < nbMesh ; ++istep)
        {
            nth_element(startD + iFirstStep, startD + iLastStep - 1, vecToSort.end());
            m_mesh[id][istep] = vecToSort[iLastStep];
            iFirstStep  = iLastStep;
            iLastStep   += nsimulPerStep;
        }
        nth_element(startD + iFirstStep, startD + nbSimul - 1, vecToSort.end());
        m_mesh[id][nbMesh] = vecToSort[nbSimul - 1];
    }
    // rescale
    for (int is = 0 ; is < nbSimul  ; ++is)
        rescaleAParticle(m_particles.col(is), m_partRescaled.col(is));

}

void SparseRegression::rescale(const ArrayXd &p_weight)
{
    int nbSimul = m_particles.cols();
    ArrayXd  vecToSort(nbSimul);
    // mesh
    for (int id = 0 ; id < p_weight.size(); ++id)
    {
        for (int is = 0 ; is <  nbSimul ; ++is)
            vecToSort(is) = m_particles(id, is);
        double  vMin = vecToSort.minCoeff();
        double vMax = vecToSort.maxCoeff();
        // resize to store mesh position
        m_mesh[id].resize(2);
        m_mesh[id][0] = vMin;
        m_mesh[id][1] = vMax;
    }
    // rescale
    for (int is = 0 ; is < nbSimul  ; ++is)
        rescaleAParticle(m_particles.col(is), m_partRescaled.col(is));

}

void SparseRegression::recursiveFillFunctionBasisWithSon(ArrayXc &p_levelCurrent,
        ArrayXui   &p_positionCurrent,
        const int &p_ipoint,
        ArrayXd &p_xMiddle,
        ArrayXd &p_dx,
        const ArrayXd &p_x,
        const unsigned short int &p_idimMin,
        ArrayXd &p_funcVal,
        const Array< array<int, 2 >, Dynamic, Dynamic >    &p_son,
        vector<double> &p_nonNullFunctionValues,
        vector<int>    &p_associatedFunctionNumber) const
{
    // add value
    p_nonNullFunctionValues.push_back(p_funcVal.prod());
    p_associatedFunctionNumber.push_back(p_ipoint);
    // iterate on dimension
    for (int idim = 0 ; idim < p_idimMin ;  ++idim)
    {
        double oldFuncVal = p_funcVal(idim);
        double oldDx = p_dx(idim);
        double dxModified = 0.5 * p_dx(idim) ;
        p_dx(idim) = dxModified;
        // child level
        p_levelCurrent(idim) += 1;
        if (p_x(idim) <= p_xMiddle(idim))
        {
            // child level
            int iLeft = p_son(p_ipoint, idim)[0];
            if (iLeft >= 0)
            {
                // go left
                p_xMiddle(idim) -= dxModified;
                // left
                p_positionCurrent(idim) *= 2;
                p_funcVal(idim) = m_functionScal[p_levelCurrent(idim) - 1][p_positionCurrent(idim)](p_x(idim));
                recursiveFillFunctionBasisWithSon(p_levelCurrent, p_positionCurrent, iLeft, p_xMiddle, p_dx, p_x, idim + 1, p_funcVal, p_son, p_nonNullFunctionValues, p_associatedFunctionNumber);
                p_positionCurrent(idim) /= 2;
                p_xMiddle(idim) += dxModified;
            }
        }
        else
        {
            // child level
            int iRight = p_son(p_ipoint, idim)[1];
            if (iRight >= 0)
            {
                // go right
                p_xMiddle(idim) += dxModified;
                p_positionCurrent(idim) = 2 * p_positionCurrent(idim) + 1;
                p_funcVal(idim) = m_functionScal[p_levelCurrent(idim) - 1][p_positionCurrent(idim)](p_x(idim));
                recursiveFillFunctionBasisWithSon(p_levelCurrent, p_positionCurrent, iRight, p_xMiddle, p_dx, p_x, idim + 1, p_funcVal, p_son, p_nonNullFunctionValues, p_associatedFunctionNumber);
                p_positionCurrent(idim) = (p_positionCurrent(idim) - 1) / 2;
                p_xMiddle(idim) -= dxModified;
            }
        }
        p_funcVal(idim) = oldFuncVal;
        p_dx(idim) = oldDx;
        p_levelCurrent(idim) -= 1;
    }
}


void SparseRegression::assessFuncBasis(const ArrayXd &p_particle, vector<double> &p_nonNullFunctionValues, vector<int>    &p_associatedFunctionNumber) const
{
    // to store function value
    ArrayXd  funcVal = ArrayXd::Constant(m_spGrid->getDimension(), 1);
    // level
    ArrayXc levelCurrent = ArrayXc::Constant(m_spGrid->getDimension(), 1);
    // position
    ArrayXui  positionCurrent = ArrayXui::Zero(m_spGrid->getDimension());
    // utilitary for terations
    ArrayXd dx = ArrayXd::Constant(m_spGrid->getDimension(), 0.5);
    ArrayXd  xMiddle = ArrayXd::Constant(m_spGrid->getDimension(), 0.5);
    p_nonNullFunctionValues.reserve(m_spGrid->getDataSetDepth());
    p_associatedFunctionNumber.reserve(m_spGrid->getDataSetDepth());
    // fill in non null function basis values
    recursiveFillFunctionBasisWithSon(levelCurrent,  positionCurrent, 0, xMiddle,  dx, p_particle, m_spGrid->getDimension(), funcVal, *m_spGrid->getSon(), p_nonNullFunctionValues,  p_associatedFunctionNumber);
}



void SparseRegression::fillInRegressionMatrix(MatrixXd &p_matReg)
{
    // parallel Matrix
#ifdef _OPENMP
    int nbThread = omp_get_max_threads();
#else
    int nbThread = 1 ;
#endif
    vector< MatrixXd> matrixThread(nbThread);
    for (int it = 0 ; it < nbThread; ++it)
        matrixThread[it].resize(p_matReg.rows(), p_matReg.cols());
    int it ;
#ifdef _OPENMP
    #pragma omp parallel for  private(it)
#endif
    for (it = 0 ; it < nbThread; ++it)
        matrixThread[it].setConstant(0.);

    int is ;
#ifdef _OPENMP
    #pragma omp parallel for  private(is)
#endif
    for (is = 0 ; is < m_particles.cols(); ++is)
    {
#ifdef _OPENMP
        int ithread = omp_get_thread_num();
#else
        int ithread = 0;
#endif
        // to store result
        vector<double> nonNullFunctionValues;
        vector<int>   associatedFunctionNumber;
        assessFuncBasis(m_partRescaled.col(is), nonNullFunctionValues, associatedFunctionNumber);

        // calculate  the matrix
        for (size_t ipx = 0; ipx < associatedFunctionNumber.size(); ++ipx)
        {
            int iposx =  associatedFunctionNumber[ipx];
            for (size_t ipy =  ipx ;  ipy <  associatedFunctionNumber.size(); ++ipy)
            {
                int iposy =  associatedFunctionNumber[ipy];
                matrixThread[ithread](iposx, iposy) += nonNullFunctionValues[ipx] * nonNullFunctionValues[ipy];
            }
        }
    }
    p_matReg = matrixThread[0];
    for (it = 1 ;  it < nbThread; ++it)
        p_matReg += matrixThread[it];
    //   only a part has been calculated, just symetrize
    for (int ipx = 0; ipx < p_matReg.rows(); ++ipx)
        for (int ipy = ipx + 1; ipy < p_matReg.rows(); ++ipy)
            p_matReg(ipx, ipy) += p_matReg(ipy, ipx);
    // just copy the low diagonal
    for (int ipx = 0; ipx < p_matReg.rows(); ++ipx)
        for (int ipy = 0; ipy < ipx; ++ipy)
            p_matReg(ipx, ipy) = p_matReg(ipy, ipx);

}

MatrixXd SparseRegression::fillInSecondMember(const MatrixXd &p_fToRegress) const
{
    MatrixXd secondMember(p_fToRegress.rows(), m_spGrid->getNbPoints());
    // parallel Matrix
#ifdef _OPENMP
    int nbThread = omp_get_max_threads();
#else
    int nbThread = 1 ;
#endif
    vector< MatrixXd> secMember(nbThread);
    for (int it = 0 ; it < nbThread; ++it)
        secMember[it].resize(secondMember.rows(), secondMember.cols());
    int it ;
#ifdef _OPENMP
    #pragma omp parallel for  private(it)
#endif
    for (it = 0 ; it < nbThread; ++it)
        secMember[it].setConstant(0.);

    int is ;
#ifdef _OPENMP
    #pragma omp parallel for  private(is)
#endif
    for (is = 0 ; is < m_particles.cols(); ++is)
    {
#ifdef _OPENMP
        int ithread = omp_get_thread_num();
#else
        int ithread = 0;
#endif
        // to store result
        vector<double> nonNullFunctionValues;
        vector<int>   associatedFunctionNumber;
        assessFuncBasis(m_partRescaled.col(is), nonNullFunctionValues, associatedFunctionNumber);

        for (size_t ip = 0 ; ip <  associatedFunctionNumber.size(); ++ip)
        {
            secMember[ithread].col(associatedFunctionNumber[ip]) += p_fToRegress.col(is) * nonNullFunctionValues[ip];
        }
    }
    secondMember =  secMember[0];
    for (it = 1 ;  it < nbThread; ++it)
        secondMember += secMember[it];
    return secondMember;
}


void SparseRegression::reconstruct(const ArrayXXd &p_basisCoeff, ArrayXXd   &p_fRegressed) const
{
    // reconstruct
    p_fRegressed.setConstant(0.);
    int is ;
#ifdef _OPENMP
    #pragma omp parallel for  private(is)
#endif
    for (is = 0 ; is < m_particles.cols(); ++is)
    {
        // to store result
        vector<double> nonNullFunctionValues;
        vector<int>   associatedFunctionNumber;
        assessFuncBasis(m_partRescaled.col(is), nonNullFunctionValues, associatedFunctionNumber);

        for (size_t ip = 0 ; ip <  associatedFunctionNumber.size(); ++ip)
            p_fRegressed.col(is) += p_basisCoeff.col(associatedFunctionNumber[ip]) * nonNullFunctionValues[ip];
    }
}

double  SparseRegression::reconstructOneParticle(const ArrayXd &p_basisCoeff, const ArrayXd   &p_aParticle) const
{
    // reconstruct return
    double ret  = 0;
    // to store result
    vector<double> nonNullFunctionValues;
    vector<int>   associatedFunctionNumber;
    assessFuncBasis(p_aParticle, nonNullFunctionValues, associatedFunctionNumber);

    for (size_t ip = 0 ; ip <  associatedFunctionNumber.size(); ++ip)
        ret += p_basisCoeff(associatedFunctionNumber[ip]) * nonNullFunctionValues[ip];
    return ret;
}

ArrayXd SparseRegression::getCoordBasisFunction(const ArrayXd &p_fToRegress) const
{
    if ((!m_bZeroDate) && (m_spGrid->getLevelMax() != 0))
    {
        Map<const MatrixXd>  fToRegress2D(p_fToRegress.data(), 1, p_fToRegress.size());
        MatrixXd secMember2D = fillInSecondMember(fToRegress2D);
        Map<const VectorXd > secMember(secMember2D.data(), secMember2D.size());
        if (m_bSingular)
        {
            // find pseudo inverse  yReg^T  M^{-2}  yReg secMember
            Eigen::VectorXd xInter = m_llt.solve(m_yReg * secMember)  ;
            return (m_yReg.transpose() * m_llt.solve(xInter)).array();

        }
        else
        {
            // Direct Choleski
            return m_llt.solve(secMember).array();
        }
    }
    else
    {
        ArrayXd retAverage(1);
        retAverage(0) = p_fToRegress.mean();
        return retAverage;
    }
}

ArrayXXd SparseRegression::getCoordBasisFunctionMultiple(const ArrayXXd &p_fToRegress) const
{
    if ((!m_bZeroDate) && (m_spGrid->getLevelMax() != 0))
    {
        MatrixXd secMember2D = fillInSecondMember(p_fToRegress).transpose();
        MatrixXd ret(secMember2D.rows(), secMember2D.cols()) ;
        if (m_bSingular)
        {
            for (int j = 0; j < secMember2D.cols(); ++j)
            {
                // find pseudo inverse  yReg^T  M^{-2}  yReg secMember
                Eigen::VectorXd xInter = m_llt.solve(m_yReg * secMember2D.col(j));
                ret.col(j) = m_yReg.transpose() * m_llt.solve(xInter);
            }
        }
        else
        {
            // direct inversion with Choleski
            for (int j = 0; j < secMember2D.cols(); ++j)
                ret.col(j) = m_llt.solve(secMember2D.col(j)) ;
        }
        return ret.transpose().array();
    }
    else
    {
        ArrayXXd retAverage(p_fToRegress.rows(), 1);
        for (int nsm = 0; nsm <  p_fToRegress.rows(); ++nsm)
            retAverage.row(nsm).setConstant(p_fToRegress.row(nsm).mean());
        return retAverage;
    }
}

double SparseRegression::reconstructionASim(const int &p_isim, const Eigen::ArrayXd   &p_basisCoefficients) const
{
    if ((m_bZeroDate) || (m_spGrid->getLevelMax() == 0))
        return p_basisCoefficients(0);
// to store result
    vector<double> nonNullFunctionValues;
    vector<int>   associatedFunctionNumber;
    assessFuncBasis(m_partRescaled.col(p_isim), nonNullFunctionValues, associatedFunctionNumber);
    double ret  = 0. ;
    for (size_t ip = 0 ; ip <  associatedFunctionNumber.size(); ++ip)
        ret += p_basisCoefficients(associatedFunctionNumber[ip]) * nonNullFunctionValues[ip];
    return ret;
}

ArrayXd SparseRegression::getAllSimulations(const ArrayXd &p_fToRegress) const
{
    if ((m_bZeroDate) || (m_spGrid->getLevelMax() == 0))
        return ArrayXd::Constant(p_fToRegress.size(), p_fToRegress.mean());
    ArrayXd basisCoefficients = getCoordBasisFunction(p_fToRegress);
    Map<const ArrayXXd> basisCoefficients2D(basisCoefficients.data(), 1, basisCoefficients.size());
    ArrayXXd regressed2D(1, p_fToRegress.size());
    reconstruct(basisCoefficients2D, regressed2D);
    return regressed2D.transpose().col(0);
}
ArrayXXd SparseRegression::getAllSimulationsMultiple(const ArrayXXd &p_fToRegress) const
{
    if ((m_bZeroDate) || (m_spGrid->getLevelMax() == 0))
    {
        ArrayXXd ret(p_fToRegress.rows(), p_fToRegress.cols());
        for (int ism = 0; ism < p_fToRegress.rows(); ++ism)
            ret.row(ism).setConstant(p_fToRegress.row(ism).mean());
        return ret;
    }
    ArrayXXd BasisCoefficients = getCoordBasisFunctionMultiple(p_fToRegress);
    ArrayXXd regressed(p_fToRegress.rows(), p_fToRegress.cols());
    reconstruct(BasisCoefficients, regressed);
    return regressed;
}

ArrayXd SparseRegression::reconstruction(const ArrayXd   &p_basisCoefficients) const
{
    if ((!m_bZeroDate) && (m_spGrid->getLevelMax() != 0))
    {
        ArrayXXd regressed2D(1, m_particles.cols());
        Map<const ArrayXXd>  BasisCoefficients(p_basisCoefficients.data(), 1, p_basisCoefficients.size());
        reconstruct(BasisCoefficients, regressed2D);
        return regressed2D.transpose().col(0);
    }
    else
    {
        ArrayXXd retValue(p_basisCoefficients.rows(), m_particles.cols());
        for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
            retValue.row(nsm).setConstant(p_basisCoefficients(nsm, 0));
        return retValue ;

    }
}
ArrayXXd SparseRegression::reconstructionMultiple(const ArrayXXd   &p_basisCoefficients) const
{
    if ((!m_bZeroDate) && (m_spGrid->getLevelMax() != 0))
    {
        ArrayXXd regressed(p_basisCoefficients.rows(), m_particles.cols());
        reconstruct(p_basisCoefficients, regressed);
        return  regressed ;
    }
    else
    {
        ArrayXXd retValue(p_basisCoefficients.rows(),  m_particles.cols());
        for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
            retValue.row(nsm).setConstant(p_basisCoefficients(nsm, 0));
        return retValue ;
    }
}

double SparseRegression::getValue(const  ArrayXd   &p_coordinates,	const ArrayXd   &p_coordBasisFunction) const
{
    if ((!m_bZeroDate) && (m_spGrid->getLevelMax() != 0))
    {
        // rotation
        VectorXd x = m_svdMatrix * ((p_coordinates - m_meanX) / m_etypX).matrix();
        // first rescale the particle
        ArrayXd aPartRescaled(p_coordinates.size());
        rescaleAParticle(x.array(), aPartRescaled);
        return reconstructOneParticle(p_coordBasisFunction, aPartRescaled);
    }
    else
    {
        return p_coordBasisFunction(0);
    }
}

double SparseRegression::getAValue(const ArrayXd &p_coordinates,  const ArrayXd &p_ptOfStock,
                                   const vector< shared_ptr<InterpolatorSpectral> > &p_interpFuncBasis) const
{
    Eigen::ArrayXd coordBasisFunction(p_interpFuncBasis.size());
    for (int i = 0; i < coordBasisFunction.size(); ++i)
    {
        coordBasisFunction(i) = p_interpFuncBasis[i]->apply(p_ptOfStock);
    }
    return  getValue(p_coordinates, coordBasisFunction);
}
}