1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
|
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <memory>
#include "StOpt/regression/SparseRegression.h"
#include "StOpt/core/sparse/sparseGridNoBound.h"
#include "StOpt/core/utils/choleskiFunctionsVariants.h"
using namespace Eigen;
using namespace std;
namespace StOpt
{
SparseRegression::SparseRegression(const int &p_levelMax, const ArrayXd &p_weight, const int &p_degree, bool p_bNoRescale):
BaseRegression(false), m_spGrid(new SparseSpaceGridNoBound(p_levelMax, p_weight, p_degree)), m_mesh(p_weight.size()),
m_bNoRescale(p_bNoRescale)
{
}
SparseRegression::SparseRegression(const bool &p_bZeroDate,
const ArrayXXd &p_particles,
const int &p_levelMax, const ArrayXd &p_weight, const int &p_degree):
BaseRegression(p_bZeroDate, p_particles, false), m_spGrid(new SparseSpaceGridNoBound(p_levelMax, p_weight, p_degree)), m_mesh(p_weight.size()), m_bNoRescale(false)
{
if (!p_bZeroDate)
createAndFactorize(p_levelMax, p_weight, p_degree);
}
SparseRegression::SparseRegression(const bool &p_bZeroDate, shared_ptr< SparseSpaceGridNoBound> p_spGrid, const vector< vector< double> > &p_mesh, const ArrayXd &p_meanX,
const ArrayXd &p_etypX, const MatrixXd &p_svdMatrix):
BaseRegression(p_bZeroDate, p_meanX, p_etypX, p_svdMatrix, false), m_spGrid(p_spGrid), m_mesh(p_mesh), m_bNoRescale(false)
{
// fill in function basis
createBasisFunctionNoBound(m_spGrid->getLevelMax(), m_spGrid->getWeight(), m_spGrid->getDegree(), m_functionScal);
}
void SparseRegression::updateSimulations(const bool &p_bZeroDate, const Eigen::ArrayXXd &p_particles)
{
BaseRegression::updateSimulationsBase(p_bZeroDate, p_particles);
if (!p_bZeroDate)
createAndFactorize(m_spGrid->getLevelMax(), m_spGrid->getWeight(), m_spGrid->getDegree());
}
void SparseRegression::createAndFactorize(const int &p_levelMax, const ArrayXd &p_weight, const int &p_degree)
{
// fill in function basis
createBasisFunctionNoBound(p_levelMax, p_weight, p_degree, m_functionScal);
// transform particles to unit square
m_partRescaled.resize(m_particles.rows(), m_particles.cols());
if (m_bNoRescale)
rescale(p_weight);
else
transformToUnitSquare(p_levelMax, p_weight);
// calculate regression matrix
MatrixXd uReg(m_spGrid->getNbPoints(), m_spGrid->getNbPoints());
m_yReg.resize(m_spGrid->getNbPoints(), m_spGrid->getNbPoints());
MatrixXd matReg(m_spGrid->getNbPoints(), m_spGrid->getNbPoints());
fillInRegressionMatrix(matReg);
// apriori not a singular matrix
m_bSingular = false ;
recurChol(matReg, uReg, m_yReg, m_bSingular);
if (m_bSingular)
pseudoInverseFac(uReg, m_yReg, m_llt);
else
{
// directly factorize the matrix
m_yReg.resize(0, 0);
m_llt.compute(matReg);
}
}
void SparseRegression::rescaleAParticle(const Ref< const ArrayXd> p_aParticle, Ref< ArrayXd> p_aPartRescaled)const
{
for (int id = 0; id < p_aParticle.size(); ++id)
{
double aleaInit = p_aParticle(id);
int ipos = 1 ;
while ((aleaInit > m_mesh[id][ipos]) && (ipos < (static_cast<int>(m_mesh[id].size()) - 1)))
ipos += 1 ;
p_aPartRescaled(id) = min(max((((aleaInit - m_mesh[id][ipos - 1]) / (m_mesh[id][ipos] - m_mesh[id][ipos - 1])) + (ipos - 1)) / (m_mesh[id].size() - 1), 0.), 1.) ;
assert(p_aPartRescaled(id) >= -1e-9);
assert(p_aPartRescaled(id) <= 1. + 1e-9);
}
}
void SparseRegression::transformToUnitSquare(const int &p_levelMax, const ArrayXd &p_weight)
{
int nbSimul = m_particles.cols();
// mesh
for (int id = 0 ; id < p_weight.size(); ++id)
{
// calculate level max for that dimension
int initLevel = static_cast<int>(p_levelMax / p_weight(id));
// Below the size of the mesh is choosen equal to the nodal support size
int nbMesh = pow(2., initLevel - 1); // nb of meshes on last level (dimension 1)
// resize to store mesh position
m_mesh[id].resize(nbMesh + 1);
// now rescale the uncertainties in [0,1] with linear interpolation of the Cumulative distribution
// such that all meshes have roughtly the same number of particules
// use the meshing p above the very local meshing
int nsimulPerStep = nbSimul / nbMesh;
vector<double> vecToSort(nbSimul);
for (int is = 0 ; is < nbSimul ; ++is)
vecToSort[is] = m_particles(id, is);
vector<double>::iterator startD = vecToSort.begin();
int iFirstStep = 0;
int iLastStep = 1;
for (int istep = 0 ; istep < nbMesh ; ++istep)
{
nth_element(startD + iFirstStep, startD + iLastStep - 1, vecToSort.end());
m_mesh[id][istep] = vecToSort[iLastStep];
iFirstStep = iLastStep;
iLastStep += nsimulPerStep;
}
nth_element(startD + iFirstStep, startD + nbSimul - 1, vecToSort.end());
m_mesh[id][nbMesh] = vecToSort[nbSimul - 1];
}
// rescale
for (int is = 0 ; is < nbSimul ; ++is)
rescaleAParticle(m_particles.col(is), m_partRescaled.col(is));
}
void SparseRegression::rescale(const ArrayXd &p_weight)
{
int nbSimul = m_particles.cols();
ArrayXd vecToSort(nbSimul);
// mesh
for (int id = 0 ; id < p_weight.size(); ++id)
{
for (int is = 0 ; is < nbSimul ; ++is)
vecToSort(is) = m_particles(id, is);
double vMin = vecToSort.minCoeff();
double vMax = vecToSort.maxCoeff();
// resize to store mesh position
m_mesh[id].resize(2);
m_mesh[id][0] = vMin;
m_mesh[id][1] = vMax;
}
// rescale
for (int is = 0 ; is < nbSimul ; ++is)
rescaleAParticle(m_particles.col(is), m_partRescaled.col(is));
}
void SparseRegression::recursiveFillFunctionBasisWithSon(ArrayXc &p_levelCurrent,
ArrayXui &p_positionCurrent,
const int &p_ipoint,
ArrayXd &p_xMiddle,
ArrayXd &p_dx,
const ArrayXd &p_x,
const unsigned short int &p_idimMin,
ArrayXd &p_funcVal,
const Array< array<int, 2 >, Dynamic, Dynamic > &p_son,
vector<double> &p_nonNullFunctionValues,
vector<int> &p_associatedFunctionNumber) const
{
// add value
p_nonNullFunctionValues.push_back(p_funcVal.prod());
p_associatedFunctionNumber.push_back(p_ipoint);
// iterate on dimension
for (int idim = 0 ; idim < p_idimMin ; ++idim)
{
double oldFuncVal = p_funcVal(idim);
double oldDx = p_dx(idim);
double dxModified = 0.5 * p_dx(idim) ;
p_dx(idim) = dxModified;
// child level
p_levelCurrent(idim) += 1;
if (p_x(idim) <= p_xMiddle(idim))
{
// child level
int iLeft = p_son(p_ipoint, idim)[0];
if (iLeft >= 0)
{
// go left
p_xMiddle(idim) -= dxModified;
// left
p_positionCurrent(idim) *= 2;
p_funcVal(idim) = m_functionScal[p_levelCurrent(idim) - 1][p_positionCurrent(idim)](p_x(idim));
recursiveFillFunctionBasisWithSon(p_levelCurrent, p_positionCurrent, iLeft, p_xMiddle, p_dx, p_x, idim + 1, p_funcVal, p_son, p_nonNullFunctionValues, p_associatedFunctionNumber);
p_positionCurrent(idim) /= 2;
p_xMiddle(idim) += dxModified;
}
}
else
{
// child level
int iRight = p_son(p_ipoint, idim)[1];
if (iRight >= 0)
{
// go right
p_xMiddle(idim) += dxModified;
p_positionCurrent(idim) = 2 * p_positionCurrent(idim) + 1;
p_funcVal(idim) = m_functionScal[p_levelCurrent(idim) - 1][p_positionCurrent(idim)](p_x(idim));
recursiveFillFunctionBasisWithSon(p_levelCurrent, p_positionCurrent, iRight, p_xMiddle, p_dx, p_x, idim + 1, p_funcVal, p_son, p_nonNullFunctionValues, p_associatedFunctionNumber);
p_positionCurrent(idim) = (p_positionCurrent(idim) - 1) / 2;
p_xMiddle(idim) -= dxModified;
}
}
p_funcVal(idim) = oldFuncVal;
p_dx(idim) = oldDx;
p_levelCurrent(idim) -= 1;
}
}
void SparseRegression::assessFuncBasis(const ArrayXd &p_particle, vector<double> &p_nonNullFunctionValues, vector<int> &p_associatedFunctionNumber) const
{
// to store function value
ArrayXd funcVal = ArrayXd::Constant(m_spGrid->getDimension(), 1);
// level
ArrayXc levelCurrent = ArrayXc::Constant(m_spGrid->getDimension(), 1);
// position
ArrayXui positionCurrent = ArrayXui::Zero(m_spGrid->getDimension());
// utilitary for terations
ArrayXd dx = ArrayXd::Constant(m_spGrid->getDimension(), 0.5);
ArrayXd xMiddle = ArrayXd::Constant(m_spGrid->getDimension(), 0.5);
p_nonNullFunctionValues.reserve(m_spGrid->getDataSetDepth());
p_associatedFunctionNumber.reserve(m_spGrid->getDataSetDepth());
// fill in non null function basis values
recursiveFillFunctionBasisWithSon(levelCurrent, positionCurrent, 0, xMiddle, dx, p_particle, m_spGrid->getDimension(), funcVal, *m_spGrid->getSon(), p_nonNullFunctionValues, p_associatedFunctionNumber);
}
void SparseRegression::fillInRegressionMatrix(MatrixXd &p_matReg)
{
// parallel Matrix
#ifdef _OPENMP
int nbThread = omp_get_max_threads();
#else
int nbThread = 1 ;
#endif
vector< MatrixXd> matrixThread(nbThread);
for (int it = 0 ; it < nbThread; ++it)
matrixThread[it].resize(p_matReg.rows(), p_matReg.cols());
int it ;
#ifdef _OPENMP
#pragma omp parallel for private(it)
#endif
for (it = 0 ; it < nbThread; ++it)
matrixThread[it].setConstant(0.);
int is ;
#ifdef _OPENMP
#pragma omp parallel for private(is)
#endif
for (is = 0 ; is < m_particles.cols(); ++is)
{
#ifdef _OPENMP
int ithread = omp_get_thread_num();
#else
int ithread = 0;
#endif
// to store result
vector<double> nonNullFunctionValues;
vector<int> associatedFunctionNumber;
assessFuncBasis(m_partRescaled.col(is), nonNullFunctionValues, associatedFunctionNumber);
// calculate the matrix
for (size_t ipx = 0; ipx < associatedFunctionNumber.size(); ++ipx)
{
int iposx = associatedFunctionNumber[ipx];
for (size_t ipy = ipx ; ipy < associatedFunctionNumber.size(); ++ipy)
{
int iposy = associatedFunctionNumber[ipy];
matrixThread[ithread](iposx, iposy) += nonNullFunctionValues[ipx] * nonNullFunctionValues[ipy];
}
}
}
p_matReg = matrixThread[0];
for (it = 1 ; it < nbThread; ++it)
p_matReg += matrixThread[it];
// only a part has been calculated, just symetrize
for (int ipx = 0; ipx < p_matReg.rows(); ++ipx)
for (int ipy = ipx + 1; ipy < p_matReg.rows(); ++ipy)
p_matReg(ipx, ipy) += p_matReg(ipy, ipx);
// just copy the low diagonal
for (int ipx = 0; ipx < p_matReg.rows(); ++ipx)
for (int ipy = 0; ipy < ipx; ++ipy)
p_matReg(ipx, ipy) = p_matReg(ipy, ipx);
}
MatrixXd SparseRegression::fillInSecondMember(const MatrixXd &p_fToRegress) const
{
MatrixXd secondMember(p_fToRegress.rows(), m_spGrid->getNbPoints());
// parallel Matrix
#ifdef _OPENMP
int nbThread = omp_get_max_threads();
#else
int nbThread = 1 ;
#endif
vector< MatrixXd> secMember(nbThread);
for (int it = 0 ; it < nbThread; ++it)
secMember[it].resize(secondMember.rows(), secondMember.cols());
int it ;
#ifdef _OPENMP
#pragma omp parallel for private(it)
#endif
for (it = 0 ; it < nbThread; ++it)
secMember[it].setConstant(0.);
int is ;
#ifdef _OPENMP
#pragma omp parallel for private(is)
#endif
for (is = 0 ; is < m_particles.cols(); ++is)
{
#ifdef _OPENMP
int ithread = omp_get_thread_num();
#else
int ithread = 0;
#endif
// to store result
vector<double> nonNullFunctionValues;
vector<int> associatedFunctionNumber;
assessFuncBasis(m_partRescaled.col(is), nonNullFunctionValues, associatedFunctionNumber);
for (size_t ip = 0 ; ip < associatedFunctionNumber.size(); ++ip)
{
secMember[ithread].col(associatedFunctionNumber[ip]) += p_fToRegress.col(is) * nonNullFunctionValues[ip];
}
}
secondMember = secMember[0];
for (it = 1 ; it < nbThread; ++it)
secondMember += secMember[it];
return secondMember;
}
void SparseRegression::reconstruct(const ArrayXXd &p_basisCoeff, ArrayXXd &p_fRegressed) const
{
// reconstruct
p_fRegressed.setConstant(0.);
int is ;
#ifdef _OPENMP
#pragma omp parallel for private(is)
#endif
for (is = 0 ; is < m_particles.cols(); ++is)
{
// to store result
vector<double> nonNullFunctionValues;
vector<int> associatedFunctionNumber;
assessFuncBasis(m_partRescaled.col(is), nonNullFunctionValues, associatedFunctionNumber);
for (size_t ip = 0 ; ip < associatedFunctionNumber.size(); ++ip)
p_fRegressed.col(is) += p_basisCoeff.col(associatedFunctionNumber[ip]) * nonNullFunctionValues[ip];
}
}
double SparseRegression::reconstructOneParticle(const ArrayXd &p_basisCoeff, const ArrayXd &p_aParticle) const
{
// reconstruct return
double ret = 0;
// to store result
vector<double> nonNullFunctionValues;
vector<int> associatedFunctionNumber;
assessFuncBasis(p_aParticle, nonNullFunctionValues, associatedFunctionNumber);
for (size_t ip = 0 ; ip < associatedFunctionNumber.size(); ++ip)
ret += p_basisCoeff(associatedFunctionNumber[ip]) * nonNullFunctionValues[ip];
return ret;
}
ArrayXd SparseRegression::getCoordBasisFunction(const ArrayXd &p_fToRegress) const
{
if ((!m_bZeroDate) && (m_spGrid->getLevelMax() != 0))
{
Map<const MatrixXd> fToRegress2D(p_fToRegress.data(), 1, p_fToRegress.size());
MatrixXd secMember2D = fillInSecondMember(fToRegress2D);
Map<const VectorXd > secMember(secMember2D.data(), secMember2D.size());
if (m_bSingular)
{
// find pseudo inverse yReg^T M^{-2} yReg secMember
Eigen::VectorXd xInter = m_llt.solve(m_yReg * secMember) ;
return (m_yReg.transpose() * m_llt.solve(xInter)).array();
}
else
{
// Direct Choleski
return m_llt.solve(secMember).array();
}
}
else
{
ArrayXd retAverage(1);
retAverage(0) = p_fToRegress.mean();
return retAverage;
}
}
ArrayXXd SparseRegression::getCoordBasisFunctionMultiple(const ArrayXXd &p_fToRegress) const
{
if ((!m_bZeroDate) && (m_spGrid->getLevelMax() != 0))
{
MatrixXd secMember2D = fillInSecondMember(p_fToRegress).transpose();
MatrixXd ret(secMember2D.rows(), secMember2D.cols()) ;
if (m_bSingular)
{
for (int j = 0; j < secMember2D.cols(); ++j)
{
// find pseudo inverse yReg^T M^{-2} yReg secMember
Eigen::VectorXd xInter = m_llt.solve(m_yReg * secMember2D.col(j));
ret.col(j) = m_yReg.transpose() * m_llt.solve(xInter);
}
}
else
{
// direct inversion with Choleski
for (int j = 0; j < secMember2D.cols(); ++j)
ret.col(j) = m_llt.solve(secMember2D.col(j)) ;
}
return ret.transpose().array();
}
else
{
ArrayXXd retAverage(p_fToRegress.rows(), 1);
for (int nsm = 0; nsm < p_fToRegress.rows(); ++nsm)
retAverage.row(nsm).setConstant(p_fToRegress.row(nsm).mean());
return retAverage;
}
}
double SparseRegression::reconstructionASim(const int &p_isim, const Eigen::ArrayXd &p_basisCoefficients) const
{
if ((m_bZeroDate) || (m_spGrid->getLevelMax() == 0))
return p_basisCoefficients(0);
// to store result
vector<double> nonNullFunctionValues;
vector<int> associatedFunctionNumber;
assessFuncBasis(m_partRescaled.col(p_isim), nonNullFunctionValues, associatedFunctionNumber);
double ret = 0. ;
for (size_t ip = 0 ; ip < associatedFunctionNumber.size(); ++ip)
ret += p_basisCoefficients(associatedFunctionNumber[ip]) * nonNullFunctionValues[ip];
return ret;
}
ArrayXd SparseRegression::getAllSimulations(const ArrayXd &p_fToRegress) const
{
if ((m_bZeroDate) || (m_spGrid->getLevelMax() == 0))
return ArrayXd::Constant(p_fToRegress.size(), p_fToRegress.mean());
ArrayXd basisCoefficients = getCoordBasisFunction(p_fToRegress);
Map<const ArrayXXd> basisCoefficients2D(basisCoefficients.data(), 1, basisCoefficients.size());
ArrayXXd regressed2D(1, p_fToRegress.size());
reconstruct(basisCoefficients2D, regressed2D);
return regressed2D.transpose().col(0);
}
ArrayXXd SparseRegression::getAllSimulationsMultiple(const ArrayXXd &p_fToRegress) const
{
if ((m_bZeroDate) || (m_spGrid->getLevelMax() == 0))
{
ArrayXXd ret(p_fToRegress.rows(), p_fToRegress.cols());
for (int ism = 0; ism < p_fToRegress.rows(); ++ism)
ret.row(ism).setConstant(p_fToRegress.row(ism).mean());
return ret;
}
ArrayXXd BasisCoefficients = getCoordBasisFunctionMultiple(p_fToRegress);
ArrayXXd regressed(p_fToRegress.rows(), p_fToRegress.cols());
reconstruct(BasisCoefficients, regressed);
return regressed;
}
ArrayXd SparseRegression::reconstruction(const ArrayXd &p_basisCoefficients) const
{
if ((!m_bZeroDate) && (m_spGrid->getLevelMax() != 0))
{
ArrayXXd regressed2D(1, m_particles.cols());
Map<const ArrayXXd> BasisCoefficients(p_basisCoefficients.data(), 1, p_basisCoefficients.size());
reconstruct(BasisCoefficients, regressed2D);
return regressed2D.transpose().col(0);
}
else
{
ArrayXXd retValue(p_basisCoefficients.rows(), m_particles.cols());
for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
retValue.row(nsm).setConstant(p_basisCoefficients(nsm, 0));
return retValue ;
}
}
ArrayXXd SparseRegression::reconstructionMultiple(const ArrayXXd &p_basisCoefficients) const
{
if ((!m_bZeroDate) && (m_spGrid->getLevelMax() != 0))
{
ArrayXXd regressed(p_basisCoefficients.rows(), m_particles.cols());
reconstruct(p_basisCoefficients, regressed);
return regressed ;
}
else
{
ArrayXXd retValue(p_basisCoefficients.rows(), m_particles.cols());
for (int nsm = 0; nsm < p_basisCoefficients.rows(); ++nsm)
retValue.row(nsm).setConstant(p_basisCoefficients(nsm, 0));
return retValue ;
}
}
double SparseRegression::getValue(const ArrayXd &p_coordinates, const ArrayXd &p_coordBasisFunction) const
{
if ((!m_bZeroDate) && (m_spGrid->getLevelMax() != 0))
{
// rotation
VectorXd x = m_svdMatrix * ((p_coordinates - m_meanX) / m_etypX).matrix();
// first rescale the particle
ArrayXd aPartRescaled(p_coordinates.size());
rescaleAParticle(x.array(), aPartRescaled);
return reconstructOneParticle(p_coordBasisFunction, aPartRescaled);
}
else
{
return p_coordBasisFunction(0);
}
}
double SparseRegression::getAValue(const ArrayXd &p_coordinates, const ArrayXd &p_ptOfStock,
const vector< shared_ptr<InterpolatorSpectral> > &p_interpFuncBasis) const
{
Eigen::ArrayXd coordBasisFunction(p_interpFuncBasis.size());
for (int i = 0; i < coordBasisFunction.size(); ++i)
{
coordBasisFunction(i) = p_interpFuncBasis[i]->apply(p_ptOfStock);
}
return getValue(p_coordinates, coordBasisFunction);
}
}
|