1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <vector>
#include <array>
#include <iostream>
#include <Eigen/Dense>
#include "StOpt/core/utils/types.h"
#include "StOpt/core/grids/InterpolatorSpectral.h"
using namespace std;
using namespace Eigen;
namespace StOpt
{
// Only upper part is filled in
ArrayXd localConstMatrixCalculation(const ArrayXi &p_simToCell,
const int &p_nbCell)
{
int nbSimul = p_simToCell.size();
// initialization
ArrayXd matReg = ArrayXd::Zero(p_nbCell);
for (int is = 0; is < nbSimul ; ++is)
{
// cell number
int ncell = p_simToCell(is) ;
matReg(ncell) += 1;
}
// check if matrix is null
for (int iReg = 0; iReg < matReg.size(); ++iReg)
if (matReg(iReg) < 0.5) // here use constant because matReg is integer
matReg(iReg) = 1;
// normalization
matReg /= nbSimul ;
return matReg;
}
ArrayXXd localConstSecondMemberCalculation(const ArrayXi &p_simToCell,
const int &p_nbCell,
const ArrayXXd &p_fToRegress)
{
int nbSimul = p_simToCell.size();
// number of function to regress
int iSecMem = p_fToRegress.rows();
ArrayXXd secMember = ArrayXXd::Zero(p_fToRegress.rows(), p_nbCell);
for (int is = 0; is < nbSimul ; ++is)
{
int nCell = p_simToCell(is);
// nest on second members
for (int nsm = 0 ; nsm < iSecMem ; ++nsm)
{
double xtemp = p_fToRegress(nsm, is) ;
// second member of the regression problem
secMember(nsm, nCell) += xtemp ;
}
}
// normalization
secMember /= nbSimul;
return secMember;
}
ArrayXXd localConstReconstruction(const ArrayXi &p_simToCell,
const ArrayXXd &p_foncBasisCoef)
{
int nbSimul = p_simToCell.size();
// initialization
ArrayXXd solution(p_foncBasisCoef.rows(), nbSimul) ;
for (int is = 0; is < nbSimul ; ++is)
{
int nCell = p_simToCell(is) ;
for (int isecMem = 0; isecMem < p_foncBasisCoef.rows(); ++isecMem)
solution(isecMem, is) = p_foncBasisCoef(isecMem, nCell) ;
}
return solution;
}
ArrayXd localConstReconstructionOnePoint(const ArrayXd &p_oneParticle,
const vector< shared_ptr< ArrayXd > > &p_mesh1D,
const ArrayXXd &p_foncBasisCoef)
{
// Values of the functon basis and position of the particle in the mesh
int iCell = 0 ;
int idecCell = 1;
for (int id = 0 ; id < p_oneParticle.size() ; id++)
{
int iMesh = 1 ;
while ((p_oneParticle(id) > (*p_mesh1D[id])(iMesh)) && (iMesh < p_mesh1D[id]->size() - 1)) iMesh++;
iCell += (iMesh - 1) * idecCell;
idecCell *= p_mesh1D[id]->size() - 1;
}
// reconstruction
ArrayXd solution(p_foncBasisCoef.rows());
for (int isecMem = 0; isecMem < solution.size(); ++isecMem)
solution(isecMem) = p_foncBasisCoef(isecMem, iCell) ;
return solution;
}
double localConstReconsOnePointSimStock(const ArrayXd &p_oneParticle, const ArrayXd &p_stock,
const std::vector< std::shared_ptr<InterpolatorSpectral> > &p_interpBaseFunc,
const std::vector< std::shared_ptr< ArrayXd > > &p_mesh1D)
{
// Values of the functon basis and position of the particle in the mesh
int iCell = 0 ;
int idecCell = 1;
for (int id = 0 ; id < p_oneParticle.size() ; id++)
{
int iMesh = 1 ;
while ((p_oneParticle(id) > (*p_mesh1D[id])(iMesh)) && (iMesh < p_mesh1D[id]->size() - 1)) iMesh++;
iCell += (iMesh - 1) * idecCell;
idecCell *= p_mesh1D[id]->size() - 1;
}
// reconstruction
return p_interpBaseFunc[iCell]->apply(p_stock);
}
}
|