File: localLinearDiscrLastDimMatrixOperation.cpp

package info (click to toggle)
stopt 5.12%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,860 kB
  • sloc: cpp: 70,456; python: 5,950; makefile: 72; sh: 57
file content (271 lines) | stat: -rw-r--r-- 9,565 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/// Copyright (C) 2021 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <vector>
#include <array>
#include <iostream>
#include <Eigen/Dense>
#include "StOpt/core/utils/types.h"
#include "StOpt/core/utils/constant.h"
#include "StOpt/core/grids/InterpolatorSpectral.h"

using namespace std;
using namespace Eigen;

namespace StOpt
{

// Only upper part is filled in
ArrayXXd localLinearDiscrLastDimMatrixCalculation(const ArrayXXd &p_particles,
        const ArrayXi &p_simToCell,
        const Array< array< double, 2>, Dynamic, Dynamic > &p_mesh)
{
    int nbSimul =  p_simToCell.size();
    int nBase = p_particles.rows() ;
    int nbCell = p_mesh.cols();
    //to store fuction basis values
    ArrayXd FBase(nBase);

    // initialization
    ArrayXXd matReg = ArrayXXd::Zero(nBase * nBase, nbCell);

    for (int is = 0; is < nbSimul ; ++is)
    {
        // cell number
        int ncell = p_simToCell(is) ;
        // calculate basis function values
        FBase(0) = 1;
        for (int id = 0 ; id < nBase - 1 ; id++)
        {
            double xPosMin =  p_mesh(id, ncell)[0];
            double xPosMax =  p_mesh(id, ncell)[1] ;
            FBase(id + 1) = (p_particles(id, is) - xPosMin) / (xPosMax - xPosMin);
        }
        for (int k = 0 ; k < nBase ; ++k)
            for (int kk = k ; kk < nBase ; ++kk)
                matReg(k + kk * nBase, ncell) += FBase(k) * FBase(kk);
    }

    // normalization
    matReg /= nbSimul ;
    return matReg;

}

ArrayXXd localLinearDiscrLastDimSecondMemberCalculation(const ArrayXXd &p_particles,
        const ArrayXi &p_simToCell,
        const Array< array< double, 2>, Dynamic, Dynamic > &p_mesh,
        const ArrayXXd &p_fToRegress)
{
    int nbSimul = p_simToCell.size();
    int nBase = p_particles.rows() ;
    int nbCell =  p_mesh.cols();
    // number of function to regress
    int iSecMem = p_fToRegress.rows();

    ArrayXd  FBase(nBase);
    ArrayXXd secMember = ArrayXXd::Zero(p_fToRegress.rows(), nbCell * nBase);
    for (int is = 0; is < nbSimul ; ++is)
    {
        int nCell = p_simToCell(is);
        FBase(0) = 1;
        for (int id = 0 ; id < nBase - 1; id++)
        {
            double xPosMin = p_mesh(id, nCell)[0] ;
            double xPosMax = p_mesh(id, nCell)[1] ;
            FBase(id + 1) = (p_particles(id, is) - xPosMin) / (xPosMax - xPosMin);
        }
        int idec = nCell * nBase;
        // nest on second members
        for (int nsm = 0 ; nsm < iSecMem ; ++nsm)
        {
            double xtemp = p_fToRegress(nsm, is) ;
            // second member of the regression problem
            for (int id = 0 ; id < nBase ; ++id)
                secMember(nsm, idec + id) += xtemp * FBase(id);
        }
    }
    // normalization
    secMember /= nbSimul;
    return secMember;
}

ArrayXXd localLinearDiscrLastDimSecondMemberCalculationOneCell(const ArrayXXd &p_particles,
        const std::vector<int>   &p_SimulBelongingToCell,
        const Eigen::Ref<const Eigen::Array< array<double, 2 >, Eigen::Dynamic, 1 > >    &p_mesh,
        const ArrayXXd &p_fToRegress)
{
    int nbSimul =  p_SimulBelongingToCell.size();
    int nBase = p_particles.rows() ;
    // number of function to regress
    int iSecMem = p_fToRegress.rows();

    ArrayXd  FBase(nBase);
    ArrayXXd secMember = ArrayXXd::Zero(p_fToRegress.rows(), nBase);
    for (int is = 0; is < nbSimul ; ++is)
    {
        FBase(0) = 1;
        for (int id = 0 ; id < nBase - 1; id++)
        {
            double xPosMin = p_mesh(id)[0] ;
            double xPosMax = p_mesh(id)[1] ;
            FBase(id + 1) = (p_particles(id,  p_SimulBelongingToCell[is]) - xPosMin) / (xPosMax - xPosMin);
        }
        // nest on second members
        for (int nsm = 0 ; nsm < iSecMem ; ++nsm)
        {
            double xtemp = p_fToRegress(nsm, is) ;
            // second member of the regression problem
            for (int id = 0 ; id < nBase ; ++id)
                secMember(nsm, id) += xtemp * FBase(id);
        }
    }
    // no normalization
    return secMember;
}


ArrayXXd localLinearDiscrLastDimReconstruction(const ArrayXXd &p_particles, const ArrayXi &p_simToCell,
        const Array< array< double, 2>, Dynamic, Dynamic > &p_mesh,
        const ArrayXXd   &p_foncBasisCoef)
{
    int nbSimul = p_simToCell.size();
    int nBase =  p_particles.rows();
    // basis
    ArrayXd FBase(nBase);
    // initialization
    ArrayXXd solution = ArrayXXd::Zero(p_foncBasisCoef.rows(), nbSimul) ;

    for (int is = 0; is < nbSimul ; ++is)
    {
        int nCell = p_simToCell(is) ;

        FBase(0) = 1;
        for (int id = 0 ; id < nBase - 1 ; id++)
        {
            double xPosMin = p_mesh(id, nCell)[0] ;
            double xPosMax = p_mesh(id, nCell)[1] ;
            FBase(id + 1) = (p_particles(id, is) - xPosMin) / (xPosMax - xPosMin);
        }

        int idec =  nCell * nBase ;
        for (int isecMem = 0; isecMem < p_foncBasisCoef.rows(); ++isecMem)
            for (int id = 0 ; id < nBase ; ++id)
                solution(isecMem, is) += p_foncBasisCoef(isecMem, idec + id) * FBase(id);
    }
    return solution;
}

double  localLinearDiscrLastDimReconstructionASim(const int &p_isim, const ArrayXXd &p_particles, const ArrayXi &p_simToCell,
        const Array< array< double, 2>, Dynamic, Dynamic > &p_mesh,
        const ArrayXd   &p_foncBasisCoef)
{
    int nBase =  p_particles.rows()  ;
    // basis
    ArrayXd FBase(nBase);
    // initialization
    double  solution = 0 ;
    int nCell = p_simToCell(p_isim) ;
    FBase(0) = 1;
    for (int id = 0 ; id < nBase - 1 ; id++)
    {
        double xPosMin = p_mesh(id, nCell)[0] ;
        double xPosMax = p_mesh(id, nCell)[1] ;
        FBase(id + 1) = (p_particles(id, p_isim) - xPosMin) / (xPosMax - xPosMin);
    }
    int idec =  nCell * nBase ;
    for (int id = 0 ; id < nBase ; ++id)
        solution += p_foncBasisCoef(idec + id) * FBase(id);
    return solution;
}


ArrayXd  localLinearDiscrLastDimReconstructionOnePoint(const ArrayXd &p_oneParticle,
        const vector< shared_ptr< ArrayXd > >   &p_mesh1D,
        const ArrayXXd   &p_foncBasisCoef)
{
    int nBase = p_oneParticle.size();
    ArrayXd  FBase(nBase);
    // Values of the functon basis and position of the  particle in the mesh
    FBase(0) = 1;
    int iCell = 0 ;
    int idecCell = 1;
    for (int id = 0 ; id < nBase - 1 ; id++)
    {
        int iMesh = 1 ;
        while ((p_oneParticle(id) > (*p_mesh1D[id])(iMesh)) && (iMesh < p_mesh1D[id]->size() - 1)) iMesh++;
        double xPosMin = (*p_mesh1D[id])(iMesh - 1) ;
        double xPosMax = (*p_mesh1D[id])(iMesh) ;
        FBase(id + 1) = (p_oneParticle(id) - xPosMin) / (xPosMax - xPosMin);
        iCell += (iMesh - 1) * idecCell;
        idecCell *= p_mesh1D[id]->size() - 1;
    }
    // position last dimension
    int iMesh = 1 ;
    while ((p_oneParticle(nBase - 1) > (*p_mesh1D[nBase - 1])(iMesh)) && (iMesh < p_mesh1D[nBase - 1]->size() - 1)) iMesh++;
    iCell += (iMesh - 1) * idecCell;

    // reconstruction
    int idec = nBase * iCell ;
    ArrayXd solution = ArrayXd::Zero(p_foncBasisCoef.rows());
    for (int isecMem = 0; isecMem < solution.size(); ++isecMem)
        for (int id = 0 ; id < nBase ; ++id)
            solution(isecMem) += p_foncBasisCoef(isecMem, idec + id) * FBase(id);
    return solution;
}

double  localLinearDiscrLastDimReconsOnePointSimStock(const ArrayXd &p_oneParticle, const ArrayXd &p_stock,
        const std::vector< std::shared_ptr<InterpolatorSpectral> > &p_interpBaseFunc,
        const std::vector< std::shared_ptr< ArrayXd >  > &p_mesh1D)
{
    int nBase = p_oneParticle.size();
    ArrayXd  FBase(nBase);
    // Values of the functon basis and position of the  particle in the mesh
    FBase(0) = 1;
    int iCell = 0 ;
    int idecCell = 1;
    for (int id = 0 ; id < nBase - 1 ; id++)
    {
        int iMesh = 1 ;
        while ((p_oneParticle(id) > (*p_mesh1D[id])(iMesh)) && (iMesh < p_mesh1D[id]->size() - 1)) iMesh++;
        double xPosMin = (*p_mesh1D[id])(iMesh - 1) ;
        double xPosMax = (*p_mesh1D[id])(iMesh) ;
        FBase(id + 1) = (p_oneParticle(id) - xPosMin) / (xPosMax - xPosMin);
        iCell += (iMesh - 1) * idecCell;
        idecCell *= p_mesh1D[id]->size() - 1;
    }
    // position last dimension
    int iMesh = 1 ;
    while ((p_oneParticle(nBase - 1) > (*p_mesh1D[nBase - 1])(iMesh)) && (iMesh < p_mesh1D[nBase - 1]->size() - 1)) iMesh++;
    iCell += (iMesh - 1) * idecCell;
    // reconstruction
    int idec = nBase * iCell ;
    double solution = 0;
    for (int id = 0 ; id < nBase ; ++id)
        solution +=  p_interpBaseFunc[idec + id]->apply(p_stock) * FBase(id);
    return solution;
}

ArrayXd  localLinearDiscrLastDimReconstructionOnePointOneCell(const ArrayXd &p_oneParticle,
        const Array< array< double, 2>, Dynamic, 1 > &p_mesh,
        const ArrayXXd   &p_foncBasisCoef)
{
    int nBase =  p_foncBasisCoef.cols();
    // basis
    ArrayXd FBase(nBase);
    // initialization
    ArrayXd solution = ArrayXd::Zero(p_foncBasisCoef.rows()) ;
    FBase(0) = 1;
    for (int id = 0 ; id < nBase - 1 ; id++)
    {
        double xPosMin = p_mesh(id)[0] ;
        double xPosMax = p_mesh(id)[1] ;
        FBase(id + 1) = (p_oneParticle(id) - xPosMin) / (xPosMax - xPosMin);
    }
    for (int isecMem = 0; isecMem < p_foncBasisCoef.rows(); ++isecMem)
        for (int id = 0 ; id < nBase ; ++id)
            solution(isecMem) += p_foncBasisCoef(isecMem, id) * FBase(id);
    return solution;
}

}