1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
/// Copyright (C) 2021 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <vector>
#include <array>
#include <iostream>
#include <Eigen/Dense>
#include "StOpt/core/utils/types.h"
#include "StOpt/core/utils/constant.h"
#include "StOpt/core/grids/InterpolatorSpectral.h"
using namespace std;
using namespace Eigen;
namespace StOpt
{
// Only upper part is filled in
ArrayXXd localLinearDiscrLastDimMatrixCalculation(const ArrayXXd &p_particles,
const ArrayXi &p_simToCell,
const Array< array< double, 2>, Dynamic, Dynamic > &p_mesh)
{
int nbSimul = p_simToCell.size();
int nBase = p_particles.rows() ;
int nbCell = p_mesh.cols();
//to store fuction basis values
ArrayXd FBase(nBase);
// initialization
ArrayXXd matReg = ArrayXXd::Zero(nBase * nBase, nbCell);
for (int is = 0; is < nbSimul ; ++is)
{
// cell number
int ncell = p_simToCell(is) ;
// calculate basis function values
FBase(0) = 1;
for (int id = 0 ; id < nBase - 1 ; id++)
{
double xPosMin = p_mesh(id, ncell)[0];
double xPosMax = p_mesh(id, ncell)[1] ;
FBase(id + 1) = (p_particles(id, is) - xPosMin) / (xPosMax - xPosMin);
}
for (int k = 0 ; k < nBase ; ++k)
for (int kk = k ; kk < nBase ; ++kk)
matReg(k + kk * nBase, ncell) += FBase(k) * FBase(kk);
}
// normalization
matReg /= nbSimul ;
return matReg;
}
ArrayXXd localLinearDiscrLastDimSecondMemberCalculation(const ArrayXXd &p_particles,
const ArrayXi &p_simToCell,
const Array< array< double, 2>, Dynamic, Dynamic > &p_mesh,
const ArrayXXd &p_fToRegress)
{
int nbSimul = p_simToCell.size();
int nBase = p_particles.rows() ;
int nbCell = p_mesh.cols();
// number of function to regress
int iSecMem = p_fToRegress.rows();
ArrayXd FBase(nBase);
ArrayXXd secMember = ArrayXXd::Zero(p_fToRegress.rows(), nbCell * nBase);
for (int is = 0; is < nbSimul ; ++is)
{
int nCell = p_simToCell(is);
FBase(0) = 1;
for (int id = 0 ; id < nBase - 1; id++)
{
double xPosMin = p_mesh(id, nCell)[0] ;
double xPosMax = p_mesh(id, nCell)[1] ;
FBase(id + 1) = (p_particles(id, is) - xPosMin) / (xPosMax - xPosMin);
}
int idec = nCell * nBase;
// nest on second members
for (int nsm = 0 ; nsm < iSecMem ; ++nsm)
{
double xtemp = p_fToRegress(nsm, is) ;
// second member of the regression problem
for (int id = 0 ; id < nBase ; ++id)
secMember(nsm, idec + id) += xtemp * FBase(id);
}
}
// normalization
secMember /= nbSimul;
return secMember;
}
ArrayXXd localLinearDiscrLastDimSecondMemberCalculationOneCell(const ArrayXXd &p_particles,
const std::vector<int> &p_SimulBelongingToCell,
const Eigen::Ref<const Eigen::Array< array<double, 2 >, Eigen::Dynamic, 1 > > &p_mesh,
const ArrayXXd &p_fToRegress)
{
int nbSimul = p_SimulBelongingToCell.size();
int nBase = p_particles.rows() ;
// number of function to regress
int iSecMem = p_fToRegress.rows();
ArrayXd FBase(nBase);
ArrayXXd secMember = ArrayXXd::Zero(p_fToRegress.rows(), nBase);
for (int is = 0; is < nbSimul ; ++is)
{
FBase(0) = 1;
for (int id = 0 ; id < nBase - 1; id++)
{
double xPosMin = p_mesh(id)[0] ;
double xPosMax = p_mesh(id)[1] ;
FBase(id + 1) = (p_particles(id, p_SimulBelongingToCell[is]) - xPosMin) / (xPosMax - xPosMin);
}
// nest on second members
for (int nsm = 0 ; nsm < iSecMem ; ++nsm)
{
double xtemp = p_fToRegress(nsm, is) ;
// second member of the regression problem
for (int id = 0 ; id < nBase ; ++id)
secMember(nsm, id) += xtemp * FBase(id);
}
}
// no normalization
return secMember;
}
ArrayXXd localLinearDiscrLastDimReconstruction(const ArrayXXd &p_particles, const ArrayXi &p_simToCell,
const Array< array< double, 2>, Dynamic, Dynamic > &p_mesh,
const ArrayXXd &p_foncBasisCoef)
{
int nbSimul = p_simToCell.size();
int nBase = p_particles.rows();
// basis
ArrayXd FBase(nBase);
// initialization
ArrayXXd solution = ArrayXXd::Zero(p_foncBasisCoef.rows(), nbSimul) ;
for (int is = 0; is < nbSimul ; ++is)
{
int nCell = p_simToCell(is) ;
FBase(0) = 1;
for (int id = 0 ; id < nBase - 1 ; id++)
{
double xPosMin = p_mesh(id, nCell)[0] ;
double xPosMax = p_mesh(id, nCell)[1] ;
FBase(id + 1) = (p_particles(id, is) - xPosMin) / (xPosMax - xPosMin);
}
int idec = nCell * nBase ;
for (int isecMem = 0; isecMem < p_foncBasisCoef.rows(); ++isecMem)
for (int id = 0 ; id < nBase ; ++id)
solution(isecMem, is) += p_foncBasisCoef(isecMem, idec + id) * FBase(id);
}
return solution;
}
double localLinearDiscrLastDimReconstructionASim(const int &p_isim, const ArrayXXd &p_particles, const ArrayXi &p_simToCell,
const Array< array< double, 2>, Dynamic, Dynamic > &p_mesh,
const ArrayXd &p_foncBasisCoef)
{
int nBase = p_particles.rows() ;
// basis
ArrayXd FBase(nBase);
// initialization
double solution = 0 ;
int nCell = p_simToCell(p_isim) ;
FBase(0) = 1;
for (int id = 0 ; id < nBase - 1 ; id++)
{
double xPosMin = p_mesh(id, nCell)[0] ;
double xPosMax = p_mesh(id, nCell)[1] ;
FBase(id + 1) = (p_particles(id, p_isim) - xPosMin) / (xPosMax - xPosMin);
}
int idec = nCell * nBase ;
for (int id = 0 ; id < nBase ; ++id)
solution += p_foncBasisCoef(idec + id) * FBase(id);
return solution;
}
ArrayXd localLinearDiscrLastDimReconstructionOnePoint(const ArrayXd &p_oneParticle,
const vector< shared_ptr< ArrayXd > > &p_mesh1D,
const ArrayXXd &p_foncBasisCoef)
{
int nBase = p_oneParticle.size();
ArrayXd FBase(nBase);
// Values of the functon basis and position of the particle in the mesh
FBase(0) = 1;
int iCell = 0 ;
int idecCell = 1;
for (int id = 0 ; id < nBase - 1 ; id++)
{
int iMesh = 1 ;
while ((p_oneParticle(id) > (*p_mesh1D[id])(iMesh)) && (iMesh < p_mesh1D[id]->size() - 1)) iMesh++;
double xPosMin = (*p_mesh1D[id])(iMesh - 1) ;
double xPosMax = (*p_mesh1D[id])(iMesh) ;
FBase(id + 1) = (p_oneParticle(id) - xPosMin) / (xPosMax - xPosMin);
iCell += (iMesh - 1) * idecCell;
idecCell *= p_mesh1D[id]->size() - 1;
}
// position last dimension
int iMesh = 1 ;
while ((p_oneParticle(nBase - 1) > (*p_mesh1D[nBase - 1])(iMesh)) && (iMesh < p_mesh1D[nBase - 1]->size() - 1)) iMesh++;
iCell += (iMesh - 1) * idecCell;
// reconstruction
int idec = nBase * iCell ;
ArrayXd solution = ArrayXd::Zero(p_foncBasisCoef.rows());
for (int isecMem = 0; isecMem < solution.size(); ++isecMem)
for (int id = 0 ; id < nBase ; ++id)
solution(isecMem) += p_foncBasisCoef(isecMem, idec + id) * FBase(id);
return solution;
}
double localLinearDiscrLastDimReconsOnePointSimStock(const ArrayXd &p_oneParticle, const ArrayXd &p_stock,
const std::vector< std::shared_ptr<InterpolatorSpectral> > &p_interpBaseFunc,
const std::vector< std::shared_ptr< ArrayXd > > &p_mesh1D)
{
int nBase = p_oneParticle.size();
ArrayXd FBase(nBase);
// Values of the functon basis and position of the particle in the mesh
FBase(0) = 1;
int iCell = 0 ;
int idecCell = 1;
for (int id = 0 ; id < nBase - 1 ; id++)
{
int iMesh = 1 ;
while ((p_oneParticle(id) > (*p_mesh1D[id])(iMesh)) && (iMesh < p_mesh1D[id]->size() - 1)) iMesh++;
double xPosMin = (*p_mesh1D[id])(iMesh - 1) ;
double xPosMax = (*p_mesh1D[id])(iMesh) ;
FBase(id + 1) = (p_oneParticle(id) - xPosMin) / (xPosMax - xPosMin);
iCell += (iMesh - 1) * idecCell;
idecCell *= p_mesh1D[id]->size() - 1;
}
// position last dimension
int iMesh = 1 ;
while ((p_oneParticle(nBase - 1) > (*p_mesh1D[nBase - 1])(iMesh)) && (iMesh < p_mesh1D[nBase - 1]->size() - 1)) iMesh++;
iCell += (iMesh - 1) * idecCell;
// reconstruction
int idec = nBase * iCell ;
double solution = 0;
for (int id = 0 ; id < nBase ; ++id)
solution += p_interpBaseFunc[idec + id]->apply(p_stock) * FBase(id);
return solution;
}
ArrayXd localLinearDiscrLastDimReconstructionOnePointOneCell(const ArrayXd &p_oneParticle,
const Array< array< double, 2>, Dynamic, 1 > &p_mesh,
const ArrayXXd &p_foncBasisCoef)
{
int nBase = p_foncBasisCoef.cols();
// basis
ArrayXd FBase(nBase);
// initialization
ArrayXd solution = ArrayXd::Zero(p_foncBasisCoef.rows()) ;
FBase(0) = 1;
for (int id = 0 ; id < nBase - 1 ; id++)
{
double xPosMin = p_mesh(id)[0] ;
double xPosMax = p_mesh(id)[1] ;
FBase(id + 1) = (p_oneParticle(id) - xPosMin) / (xPosMax - xPosMin);
}
for (int isecMem = 0; isecMem < p_foncBasisCoef.rows(); ++isecMem)
for (int id = 0 ; id < nBase ; ++id)
solution(isecMem) += p_foncBasisCoef(isecMem, id) * FBase(id);
return solution;
}
}
|