File: meshCalculationLocalRegression.cpp

package info (click to toggle)
stopt 5.12%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,860 kB
  • sloc: cpp: 70,456; python: 5,950; makefile: 72; sh: 57
file content (228 lines) | stat: -rw-r--r-- 8,593 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// Copyright (C) 2016,2021  EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <vector>
#include <array>
#include <memory>
#include <iostream>
#include <algorithm>
#include <Eigen/Dense>
#include "StOpt/regression/meshToCoordinates.h"
#include "StOpt/core/utils/constant.h"

using namespace std;
using namespace Eigen ;

namespace StOpt
{

// Local function that gives the minimum number of particle by cell
int nbMinPartByCell(const ArrayXi &p_simToCell, const int &p_nbcell)
{
    ArrayXi nbPartPerCell = ArrayXi::Zero(p_nbcell);
    for (int is = 0; is <  p_simToCell.size(); ++is)
    {
        nbPartPerCell(p_simToCell(is)) += 1;
    }
    return nbPartPerCell.minCoeff() ;
}

void meshCalculationLocalRegression(const ArrayXXd &p_particles, const ArrayXi   &p_nbMesh,
                                    ArrayXi &p_simToCell, Array< array< double, 2>, Dynamic, Dynamic > &p_mesh,
                                    vector< shared_ptr< ArrayXd > > &p_mesh1D)
{
    int nDim =  p_nbMesh.size();
    assert(p_particles.rows() == nDim);

    // number of meshes
    int nbMeshGlob  =  p_nbMesh.prod();
    p_mesh.resize(nDim, nbMeshGlob);
    p_mesh1D.resize(p_nbMesh.size());
    for (int id = 0; id < nDim; ++id)
        p_mesh1D[id] = make_shared< ArrayXd >(p_nbMesh(id) + 1);
    // number of simulations
    int nbSimul = p_particles.cols();
    // utilitary for position in meshes
    int idecCell = 1 ;
    p_simToCell.setConstant(0) ;
    // calculate the meshing (cost linear in simulation number)
    for (int id = 0 ; id < nDim ; ++id)
    {
        vector<double> partDim(nbSimul);
        for (int ip = 0; ip < nbSimul; ++ip)
            partDim[ip] = p_particles(id, ip);
        vector<double>::iterator startD = partDim.begin();
        vector<double>::iterator endD = partDim.end();
        // number of particles per mesh
        int nppm = nbSimul / p_nbMesh(id);
        // partial sort only
        nth_element(startD, startD, endD);
        (*p_mesh1D[id])(0) = partDim[0];
        nth_element(startD + 1, startD + nppm - 1, endD);
        (*p_mesh1D[id])(1) = partDim[nppm - 1];
        for (int j = 1 ; j < p_nbMesh(id) - 1 ; ++j)
        {
            assert((*p_mesh1D[id])(j) >= (*p_mesh1D[id])(j - 1));
            nth_element(startD + j * nppm, startD + (j + 1)*nppm - 1, endD);
            (*p_mesh1D[id])(j + 1) = partDim[(j + 1) * nppm - 1];
        }
        nth_element(startD + (p_nbMesh(id) - 1)*nppm, endD - 1, endD);
        (*p_mesh1D[id])(p_nbMesh(id)) = partDim[nbSimul - 1];
        assert((*p_mesh1D[id])(p_nbMesh(id))  >= (*p_mesh1D[id])(p_nbMesh(id) - 1));
        for (int is = 0 ; is < nbSimul ; ++is)
        {
            int im = 0 ;
            while (p_particles(id, is) > (*p_mesh1D[id])(im + 1)) im++;
            p_simToCell(is) += idecCell * im;
        }
        // offset
        idecCell *= p_nbMesh(id);
    }
    // Utilitary for coordinates
    VectorXi  coord(nDim) ;
    // utilitary
    int nDivInit = ((nDim > 1) ? p_nbMesh.head(nDim - 1).prod() : 1) ;
    // for each mesh  calculate its borders
    for (int im = 0 ; im < nbMeshGlob ; ++im)
    {
        ArrayXi coord = meshToCoordinates(p_nbMesh, nDivInit, im);
        for (int j = 0 ; j < nDim ; ++j)
        {
            // minimal value
            p_mesh(j, im)[0] = (*p_mesh1D[j])(coord(j)) ;
            // maximal value
            p_mesh(j, im)[1] = (*p_mesh1D[j])(coord(j) + 1) ;
        }
    }
    //assert(nbMinPartByCell(p_simToCell, nbMeshGlob) > nDim);
}


void meshCalculationLocalRegressionDiscrLastDim(const ArrayXXd &p_particles, const ArrayXi   &p_nbMesh,
        ArrayXi &p_simToCell, Array< array< double, 2>, Dynamic, Dynamic > &p_mesh,
        vector< shared_ptr< ArrayXd > > &p_mesh1D)
{
    int nDim =  p_nbMesh.size();
    assert(p_particles.rows() == nDim);

    // number of meshes
    int nbMeshGlob  =  p_nbMesh.prod();
    p_mesh.resize(nDim, nbMeshGlob);
    p_mesh1D.resize(p_nbMesh.size());
    for (int id = 0; id < nDim; ++id)
        p_mesh1D[id] = make_shared< ArrayXd >(p_nbMesh(id) + 1);
    // number of simulations
    int nbSimul = p_particles.cols();
    // utilitary for position in meshes
    int idecCell = 1 ;
    p_simToCell.setConstant(0) ;
    // calculate the meshing (cost linear in simulation number)
    // do it only for the first nDim-1 dimension
    for (int id = 0 ; id < nDim - 1 ; ++id)
    {
        vector<double> partDim(nbSimul);
        for (int ip = 0; ip < nbSimul; ++ip)
            partDim[ip] = p_particles(id, ip);
        vector<double>::iterator startD = partDim.begin();
        vector<double>::iterator endD = partDim.end();
        // number of particles per mesh
        int nppm = nbSimul / p_nbMesh(id);
        // partial sort only
        nth_element(startD, startD, endD);
        (*p_mesh1D[id])(0) = partDim[0];
        nth_element(startD + 1, startD + nppm - 1, endD);
        (*p_mesh1D[id])(1) = partDim[nppm - 1];
        for (int j = 1 ; j < p_nbMesh(id) - 1 ; ++j)
        {
            assert((*p_mesh1D[id])(j) >= (*p_mesh1D[id])(j - 1));
            nth_element(startD + j * nppm, startD + (j + 1)*nppm - 1, endD);
            (*p_mesh1D[id])(j + 1) = partDim[(j + 1) * nppm - 1];
        }
        nth_element(startD + (p_nbMesh(id) - 1)*nppm, endD - 1, endD);
        (*p_mesh1D[id])(p_nbMesh(id)) = partDim[nbSimul - 1];
        assert((*p_mesh1D[id])(p_nbMesh(id))  >= (*p_mesh1D[id])(p_nbMesh(id) - 1));
        for (int is = 0 ; is < nbSimul ; ++is)
        {
            int im = 0 ;
            while (p_particles(id, is) > (*p_mesh1D[id])(im + 1)) im++;
            p_simToCell(is) += idecCell * im;
        }
        // offset
        idecCell *= p_nbMesh(id);
    }
    // nb cell last dim
    int nbCellLDim = p_nbMesh(nDim - 1);
    // treat last dimension where values are discrete : there are gathered
    vector<std::pair<double, int> > partDim(nbSimul);
    for (int ip = 0; ip < nbSimul; ++ip)
        partDim[ip] = make_pair(p_particles(nDim - 1, ip), ip);
    // heres sort
    sort(partDim.begin(), partDim.end());
    std::vector< std::shared_ptr< std::vector<int> >  > isimByDiscr;
    isimByDiscr.reserve(10 * nbCellLDim);
    std::shared_ptr< std::vector<int> > ptLoc = make_shared< std::vector<int>>();
    ptLoc->reserve(nbSimul);
    ptLoc->push_back(partDim[0].second);
    for (int ip = 1; ip < nbSimul; ++ip)
    {
        if (std::abs(partDim[ip].first - partDim[ip - 1].first) < tiny)
        {
            ptLoc->push_back(partDim[ip].second);
        }
        else
        {
            isimByDiscr.push_back(ptLoc);
            ptLoc = make_shared< std::vector<int>>();
            ptLoc->reserve(nbSimul);
            ptLoc->push_back(partDim[ip].second);
        }
    }
    if (ptLoc->size() > 0)
    {
        isimByDiscr.push_back(ptLoc);
    }
    int nbDiscrete = isimByDiscr.size();
    int nbSimuOptByCell = static_cast<int>(0.8 * nbSimul / nbCellLDim);
    int nbSimCur = 1;
    size_t iPos = 0 ; // in isimByDiscr
    (*p_mesh1D[nDim - 1])(0) = p_particles(nDim - 1, (*isimByDiscr[0])[0])  - small;
    for (int icell = 0; icell < nbCellLDim; ++icell)
    {
        while (nbSimCur < nbSimuOptByCell)
        {
            for (size_t ip = 0; ip < isimByDiscr[iPos]->size(); ++ip)
            {
                p_simToCell((*isimByDiscr[iPos])[ip]) += idecCell * icell;
            }
            nbSimCur += isimByDiscr[iPos]->size();
            iPos += 1;
            if (iPos == isimByDiscr.size())
                break;
        }
        nbSimCur = 0;
        if ((iPos < isimByDiscr.size()) && (icell < nbCellLDim - 1))
            (*p_mesh1D[nDim - 1])(icell + 1) =  0.5 * (p_particles(nDim - 1, (*isimByDiscr[iPos])[0]) + p_particles(nDim - 1, (*isimByDiscr[iPos - 1])[0])) ;
        else
            break;
    }
    (*p_mesh1D[nDim - 1])(nbCellLDim) = p_particles(nDim - 1, (*isimByDiscr[nbDiscrete - 1])[0]) + small;

    // Utilitary for coordinates
    VectorXi  coord(nDim) ;
    // utilitary
    int nDivInit = ((nDim > 1) ? p_nbMesh.head(nDim - 1).prod() : 1) ;
    // for each mesh  calculate its borders
    for (int im = 0 ; im < nbMeshGlob ; ++im)
    {
        ArrayXi coord = meshToCoordinates(p_nbMesh, nDivInit, im);
        for (int j = 0 ; j < nDim ; ++j)
        {
            // minimal value
            p_mesh(j, im)[0] = (*p_mesh1D[j])(coord(j)) ;
            // maximal value
            p_mesh(j, im)[1] = (*p_mesh1D[j])(coord(j) + 1) ;
        }
    }
    //assert(nbMinPartByCell(p_simToCell, nbMeshGlob) >= nDim - 1);
}
}