File: nDDominanceKernel.cpp

package info (click to toggle)
stopt 5.12%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,860 kB
  • sloc: cpp: 70,456; python: 5,950; makefile: 72; sh: 57
file content (420 lines) | stat: -rw-r--r-- 14,406 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
// Copyright (C) 2018 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <vector>
#include <memory>
#include <algorithm>
#include <Eigen/Dense>
#include <iostream>


using namespace std;
using namespace Eigen ;


namespace StOpt
{

//  To ease sorting of points in each dimension
double lesserPair(const pair<double, int > &c1, const pair<double, int> &c2)
{
    return c1.first < c2.first ;
}


///  p_pt           size (2,NnbSimul)
///  p_iSort1       first set of points of size (nbSimul,2)
///  p_iSort2       second set of points of size (nbSimul,2)
///  p_valToAdd     size (P, nbSimul)
///  p_fDominLoc    size (nbFunc, N)
///  merge the two set in first direction for the last dimension
void merge1D1(const  ArrayXXd &p_pt,
              const  ArrayXXi &p_iSort1,
              const  ArrayXXi &p_iSort2,
              const ArrayXXd   &p_valToAdd,
              ArrayXXd   &p_fDominLoc)
{
    int i1 = p_iSort1.rows();
    int i2 =  p_iSort2.rows();
    int iloc = 0 ;
    ArrayXd sumToAdd = ArrayXd::Zero(p_valToAdd.rows());
    for (int i = 0; i < i2 ; ++i)
    {
        int ipt2 = p_iSort2(i, 0);
        int ipt1 = p_iSort1(iloc, 0);
        while (p_pt(0, ipt2) >=  p_pt(0, ipt1))
        {
            sumToAdd += p_valToAdd.col(ipt1);
            iloc += 1;
            if (iloc == i1)
                break;
            ipt1 =  p_iSort1(iloc, 0);
        }
        // add contribution
        p_fDominLoc.col(ipt2) += sumToAdd;
        // last points to treat
        if (iloc == i1)
        {
            for (int j = i + 1; j <  i2; ++j)
            {
                p_fDominLoc.col(p_iSort2(j, 0)) += sumToAdd;
            }
            break;
        }
    }
}



///  p_pt         size (2,nbSimul)
///  p_iSort1     first set of points of size (nbSimul,2)
///  p_iSort2     second set of points of size (nbSimul,2)
///  p_valToAdd   size (P, nbSimul)
///  p_fDominLoc  size (P, N)
///  merge the two set in second direction for the last dimension
void merge1D2(const  ArrayXXd &p_pt,
              const  ArrayXXi &p_iSort1,
              const  ArrayXXi &p_iSort2,
              const ArrayXXd   &p_valToAdd,
              ArrayXXd   &p_fDominLoc)
{
    int i1 = p_iSort1.rows();
    int i2 =  p_iSort2.rows();
    int iloc = i1 - 1 ;
    ArrayXd sumToAdd = ArrayXd::Zero(p_valToAdd.rows());
    for (int i = i2 - 1; i >= 0; --i)
    {
        int ipt2 = p_iSort2(i, 0);
        int ipt1 = p_iSort1(iloc, 0);
        while (p_pt(0, ipt1) >= p_pt(0, ipt2))
        {
            sumToAdd += p_valToAdd.col(ipt1);
            iloc -= 1;
            if (iloc == -1)
                break;
            ipt1 =  p_iSort1(iloc, 0);
        }
        // add contribution
        p_fDominLoc.col(ipt2) += sumToAdd;
        // last points to treat
        if (iloc == -1)
        {
            for (int j = 0; j < i; ++j)
            {
                p_fDominLoc.col(p_iSort2(j, 0)) += sumToAdd;
            }
            break;
        }
    }
}



///  Merge nD procedure between two sets of point to calculate all summations
///  dimension above 2
///  Set A is dominated by set B in the current dimension
///  p_pt          size (d,nbSimul)
///  p_iSort1      first set of points A  size (nbSimul,d)
///  p_iSort2      second set of points B  size (nbSimul,d
///  p_idim        current dimension treated
///  p_valToAdd   vector of size  2^{p_dim}  of arrays of size (P, nbSimul)
///  p_fDomin     vector of size  2^{p_dim}  of arrays of size (P, nbSimul)
void mergeND(const  ArrayXXd &p_pt,
             const  ArrayXXi &p_iSort1,
             const  ArrayXXi &p_iSort2,
             const int &p_idim,
             const std::vector< shared_ptr< ArrayXXd > >   &p_valToAdd,
             std::vector< shared_ptr< ArrayXXd > >   &p_fDomin)
{

    int i1 = p_iSort1.rows();
    int i2 =  p_iSort2.rows();
    // merge the two set to find the median point of the union
    int nbPoints = i1 + i2;
    int nbPtsDiv2 = nbPoints / 2;
    int iPos1 = 0; //position in array1
    int iPos2 = 0 ; // position in array 2
    int iPos = 0;
    int nDimMu = p_idim - 1;
    while ((iPos1 < i1) && (iPos2 < i2) && (iPos < nbPtsDiv2))
    {
        if (p_pt(nDimMu, p_iSort1(iPos1, nDimMu)) < p_pt(nDimMu, p_iSort2(iPos2, nDimMu)))
            iPos1++;
        else
            iPos2++;
        iPos++ ;
    }
    if (iPos1 == i1)
        iPos2 += nbPtsDiv2 - iPos;
    else if (iPos2 == i2)
        iPos1 += nbPtsDiv2 - iPos;
    double xMin = 0. ;
    if (iPos1 > 0)
    {
        if (iPos2 > 0)
            xMin = max(p_pt(nDimMu, p_iSort1(iPos1 - 1, nDimMu)), p_pt(nDimMu, p_iSort2(iPos2 - 1, nDimMu)));
        else
            xMin = p_pt(nDimMu, p_iSort1(iPos1 - 1, nDimMu));
    }
    else
        xMin = p_pt(nDimMu, p_iSort2(iPos2 - 1, nDimMu));

    double xMax = 0;
    if (iPos1 < i1)
    {
        if (iPos2 < i2)
            xMax = min(p_pt(nDimMu, p_iSort1(iPos1, nDimMu)), p_pt(nDimMu, p_iSort2(iPos2, nDimMu)));
        else
            xMax = p_pt(nDimMu, p_iSort1(iPos1, nDimMu));
    }
    else
        xMax =  p_pt(nDimMu, p_iSort2(iPos2, nDimMu));

    // xMed permist to seperate two sets with roughly the same number of particles
    double xMed = 0.5 * (xMin + xMax) ;

    // 4 sets
    ArrayXXi iSort11(iPos1, p_idim)  ; // set A below : A1
    iSort11.col(nDimMu) = p_iSort1.col(nDimMu).head(iPos1);
    ArrayXXi iSort21(iPos2, p_idim) ; // set B below: B1
    iSort21.col(nDimMu) = p_iSort2.col(nDimMu).head(iPos2);
    ArrayXXi iSort12(i1 - iPos1, p_idim); // set A above: A2
    iSort12.col(nDimMu) = p_iSort1.col(nDimMu).tail(i1 - iPos1);
    ArrayXXi iSort22(i2 - iPos2, p_idim) ; // set B above: B2
    iSort22.col(nDimMu) = p_iSort2.col(nDimMu).tail(i2 - iPos2);

    // now keep sorted point on dimension 0
    for (int id = 0 ; id < p_idim - 1; ++id)
    {
        int iloc11 = 0;
        int iloc12 = 0;
        int iloc21 = 0;
        int iloc22 = 0;
        // Set A
        for (int i = 0; i < i1; ++i)
        {
            int ipt = p_iSort1(i, id); // point number
            if (((p_pt(nDimMu, ipt) <= xMed) && (iloc11 < iPos1)) || (iloc12 == iSort12.rows()))
            {
                // under the median
                iSort11(iloc11++, id) = ipt;
            }
            else
            {
                iSort12(iloc12++, id) = ipt;
            }
        }
        // set B
        for (int i = 0; i < i2; ++i)
        {
            int ipt = p_iSort2(i, id); // point number
            if (((p_pt(nDimMu, ipt) <= xMed) && (iloc21 < iPos2)) || (iloc22 == iSort22.rows()))
            {
                // under the median
                iSort21(iloc21++, id) = ipt;
            }
            else
            {
                iSort22(iloc22++, id) = ipt;
            }
        }
    }
    // merge on the two set A1 and B1
    if ((iPos1 > 0) && (iPos2 > 0))
    {
        mergeND(p_pt, iSort11, iSort21, p_idim, p_valToAdd, p_fDomin);
    }

    // merge on teh two set A2 and B2
    if ((iPos1 < i1) && (iPos2 < i2))
    {
        mergeND(p_pt, iSort12, iSort22, p_idim, p_valToAdd, p_fDomin);
    }


    if (p_idim == 2)
    {
        // merge on inferior dimension : we know that point in iSort22 dominate iSort11 in dimension 2 and 3
        if ((iSort11.rows() > 0) && (iSort22.rows() > 0))
        {
            // merge 1D for the  direction  (x_j<x) (y_j<y)  (z_j< z) : 0
            merge1D1(p_pt, iSort11, iSort22,   *p_valToAdd[0],  *p_fDomin[0]) ;

            // merge 1D for the  direction  (x_j>x) (y_j<y)  (z_j< z) : 1
            merge1D2(p_pt, iSort11, iSort22, *p_valToAdd[1], *p_fDomin[1]);

            // merge 1D for the  direction  (x_j<x) (y_j>y)  (z_j> z) : 6
            merge1D1(p_pt, iSort22, iSort11, *p_valToAdd[6], *p_fDomin[6]);

            // merge 1D for the  direction  (x_j>x) (y_j>x)  (z_j> z) : 7
            merge1D2(p_pt,  iSort22, iSort11, *p_valToAdd[7], *p_fDomin[7]);
        }

        if ((iSort12.rows() > 0) && (iSort21.rows() > 0))
        {
            // merge 1D for the  direction  (x_j<x) (y_j>y)  (z_j< z) : 2
            merge1D1(p_pt,  iSort12, iSort21, *p_valToAdd[2],  *p_fDomin[2]) ;

            // merge 1D for the  direction  (x_j>x) (y_j>y)  (z_j< z) : 3
            merge1D2(p_pt,  iSort12, iSort21, *p_valToAdd[3],  *p_fDomin[3]) ;

            // merge 1D for the direction  (x_j<x) (y_j<y) (z_j> z) : 4
            merge1D1(p_pt,  iSort21, iSort12, *p_valToAdd[4],  *p_fDomin[4]) ;

            // merge 1D for the direction  (x_j>x) (y_j<y) (z_j> z) : 5
            merge1D2(p_pt,  iSort21, iSort12, *p_valToAdd[5],  *p_fDomin[5]) ;
        }
    }
    else
    {
        /// merge in dimension below
        int iSizeV = pow(2, p_idim);
        int iSizeVS2 = pow(2, p_idim - 1);
        if ((iSort11.rows() > 0) && (iSort22.rows() > 0))
        {
            // we know a domination of iSort22 on iSort11
            std::vector<shared_ptr< ArrayXXd > > valToAdd1(iSizeV);
            std::vector<shared_ptr< ArrayXXd > > fDomin1(iSizeV);
            for (int id = 0; id < iSizeVS2 ; ++id)
            {
                valToAdd1[id] = p_valToAdd[id];
                fDomin1[id] = p_fDomin[id];
                valToAdd1[id + iSizeVS2] = p_valToAdd[id + 3 * iSizeVS2];
                fDomin1[id + iSizeVS2] = p_fDomin[id + 3 * iSizeVS2];
            }

            mergeND(p_pt, iSort11, iSort22, nDimMu, valToAdd1, fDomin1);

        }
        if ((iSort12.rows() > 0) && (iSort21.rows() > 0))
        {


            // we know that iSort12 dominated in last coordinate and dominates is the previous iSort21
            std::vector<shared_ptr< ArrayXXd > > valToAdd3(iSizeV);
            std::vector<shared_ptr< ArrayXXd > > fDomin3(iSizeV);
            for (int id = 0; id < iSizeVS2 ; ++id)
            {
                valToAdd3[id] = p_valToAdd[id + iSizeV];
                fDomin3[id] = p_fDomin[id + iSizeV];
                valToAdd3[id + iSizeVS2] = p_valToAdd[id + iSizeVS2];
                fDomin3[id + iSizeVS2] = p_fDomin[id + iSizeVS2];
            }
            mergeND(p_pt, iSort21, iSort12, nDimMu, valToAdd3, fDomin3);


        }
    }


}



///  p_pt          size (d,nbSimul)
///  p_iSort      first set of points A  size (nbSimul,d)
///  p_valToAdd   vector of size  2^{d}  of arrays of size (P, nbSimul)
///  p_fDomin     vector of size  2^{d}  of arrays of size (P, nbSimul)
void recursiveCallND(const  ArrayXXd &p_pt,
                     const  ArrayXXi &p_iSort,
                     const std::vector< shared_ptr< ArrayXXd > >   &p_valToAdd,
                     std::vector< shared_ptr< ArrayXXd > > &p_fDomin)
{
    if (p_iSort.cols() == 1)
    {
        for (int is = 1; is <  p_pt.cols(); ++is)
            p_fDomin[0]->col(p_iSort(is, 0)) = p_fDomin[0]->col(p_iSort(is - 1, 0)) + p_valToAdd[0]->col(p_iSort(is - 1, 0)) ;
        for (int is = p_pt.cols() - 2; is >= 0; --is)
            p_fDomin[1]->col(p_iSort(is, 0)) = p_fDomin[1]->col(p_iSort(is + 1, 0)) + p_valToAdd[1]->col(p_iSort(is + 1, 0)) ;
    }
    else if (p_iSort.rows() > 1)
    {
        // split into two part
        int iSize1 = p_iSort.rows() / 2 ;
        int iSize2 = p_iSort.rows() - iSize1  ;
        int nDimM1 = p_iSort.cols() - 1;
        // position valeu of splitting position
        double xMedium = 0.5 * (p_pt(nDimM1, p_iSort(iSize1 - 1, nDimM1)) + p_pt(nDimM1, p_iSort(iSize1, nDimM1)));
        // utilitary for sorted particles
        ArrayXXi iSort1(iSize1, p_iSort.cols());
        ArrayXXi iSort2(iSize2, p_iSort.cols());
        // copy last dimenson
        iSort1.col(nDimM1) = p_iSort.col(nDimM1).head(iSize1);
        iSort2.col(nDimM1) = p_iSort.col(nDimM1).tail(iSize2);
        // two  first dimensions
        for (int id = 0; id < nDimM1; ++id)
        {
            int iLoc1 = 0 ;
            int iLoc2 = 0 ;
            for (int i = 0 ; i < p_iSort.rows() ; ++i)
            {
                int iPoint = p_iSort(i, id) ; // get back point number
                // decide in which set to add the point
                if (((p_pt(nDimM1, iPoint) < xMedium) && (iLoc1 < iSize1)) || (iLoc2 == iSize2))
                    iSort1(iLoc1++, id) = iPoint;
                else
                    iSort2(iLoc2++, id) = iPoint;
            }
        }

        // call on the two set
        recursiveCallND(p_pt, iSort1, p_valToAdd,  p_fDomin);
        recursiveCallND(p_pt, iSort2, p_valToAdd,   p_fDomin);

        // merge nD for the 2 set
        if (p_iSort.cols() > 2)
            mergeND(p_pt, iSort1, iSort2, nDimM1,  p_valToAdd, p_fDomin);
        else
        {
            // 2D merge
            // merge 1D for direction 1
            merge1D1(p_pt, iSort1, iSort2,   *p_valToAdd[0],  *p_fDomin[0]) ;
            // merge 1D for  direction 2
            merge1D2(p_pt, iSort1, iSort2,   *p_valToAdd[1], *p_fDomin[1]);

            // merge 1D for  direction 3
            merge1D1(p_pt, iSort2, iSort1,   *p_valToAdd[2],  *p_fDomin[2]) ;

            // merge 1D for  direction 4
            merge1D2(p_pt, iSort2, iSort1,   *p_valToAdd[3], *p_fDomin[3]) ;

        }

    }

}


/// \brief  Dominance for kernel
/// \param  p_pt        arrays of point coordinates  (d, nbSimul)
/// \param  p_valToAdd  terms to add  (exponential in summation above) : vector of \f$2^d \f  kinds of terms  of size ( P, nbSimul)
/// \param  p_fDomin    result of summation  \f$2^d \f terms of size  ( P, nbSimul)
void nDDominanceKernel(const ArrayXXd &p_pt,
                       const std::vector< shared_ptr< ArrayXXd > >   &p_valToAdd,
                       std::vector< shared_ptr< ArrayXXd >  > &p_fDomin)
{
    int nbSim = p_pt.cols();
    int nDim = p_pt.rows();
    // sort
    ArrayXXi iSort(nbSim, nDim);
    for (int id = 0; id < nDim; ++id)
    {
        vector< std::pair< double, int> >   xSDim(nbSim);
        for (int i = 0; i < nbSim ; ++i)
        {
            xSDim[i] = make_pair(p_pt(id, i), i);
        }
        // sort
        sort(xSDim.begin(), xSDim.end(), lesserPair);
        for (int i = 0; i < nbSim ; ++i)
            iSort(i, id) = xSDim[i].second ;
    }
    for (int ip = 0; ip < pow(2, nDim); ++ip)
        p_fDomin[ip] = make_shared<ArrayXXd>(ArrayXXd::Zero(p_valToAdd[ip]->rows(),  p_valToAdd[ip]->cols()));

    // recursive call with divide and conquer
    recursiveCallND(p_pt, iSort,  p_valToAdd,  p_fDomin);

}

}