1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
|
// Copyright (C) 2019 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#include <iostream>
#include "StOpt/tree/Tree.h"
using namespace std;
using namespace Eigen;
namespace StOpt
{
Tree::Tree() {}
Tree::Tree(const vector< double > &p_proba, const vector< std::vector< std::array<int, 2> > > &p_connected): m_proba(p_proba), m_connected(p_connected), m_nbNodeNextDate(0)
{
for (size_t i = 0; i < m_connected.size(); ++i)
{
for (size_t j = 0; j < m_connected[i].size(); ++j)
{
m_nbNodeNextDate = std::max(m_nbNodeNextDate, static_cast<int>(m_connected[i][j][0]));
}
}
m_nbNodeNextDate += 1;
}
void Tree::update(const vector< double > &p_proba,
const vector< std::vector< std::array<int, 2> > > &p_connected)
{
m_proba = p_proba;
m_connected = p_connected;
m_nbNodeNextDate = 0;
for (size_t i = 0; i < m_connected.size(); ++i)
{
for (size_t j = 0; j < m_connected[i].size(); ++j)
m_nbNodeNextDate = std::max(m_nbNodeNextDate, static_cast<int>(m_connected[i][j][0]));
}
m_nbNodeNextDate += 1;
}
ArrayXd Tree::expCond(const ArrayXd &p_values) const
{
ArrayXd ret = ArrayXd::Zero(m_connected.size());
for (size_t i = 0 ; i < m_connected.size(); ++i)
{
for (size_t j = 0; j < m_connected[i].size(); ++j)
{
ret(i) += m_proba[m_connected[i][j][1]] * p_values(m_connected[i][j][0]);
}
}
return ret;
}
ArrayXXd Tree::expCondMultiple(const ArrayXXd &p_values) const
{
ArrayXXd ret = ArrayXXd::Zero(p_values.rows(), m_connected.size());
for (size_t i = 0 ; i < m_connected.size(); ++i)
{
for (size_t j = 0; j < m_connected[i].size(); ++j)
{
ret.col(i) += m_proba[m_connected[i][j][1]] * p_values.col(m_connected[i][j][0]);
}
}
return ret;
}
}
|