File: OptimizeGasStorage.py

package info (click to toggle)
stopt 5.12%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,860 kB
  • sloc: cpp: 70,456; python: 5,950; makefile: 72; sh: 57
file content (264 lines) | stat: -rw-r--r-- 12,981 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Copyright (C) 2016 EDF
# All Rights Reserved
# This code is published under the GNU Lesser General Public License (GNU LGPL)
import StOptGrids 
import StOptReg
import numpy as np



# Defines a simple gas storage for optimization and simulation
# No constraint on the storage at the end of optimization period (so the storage will be empty)
class OptimizeGasStorage :
    
    # Constructor
    # p_maxLevel          size of the storage
    # p_injectionRate     injection rate per time step
    # p_withdrawalRate    withdrawal rate between two time steps
    # p_injectionCost     injection cost
    # p_withdrawalCost    withdrawal cost
    def __init__(self, p_injectionRate, p_withdrawalRate, p_injectionCost, p_withdrawalCost) :
        
        self.m_injectionRate = p_injectionRate
        self.m_withdrawalRate = p_withdrawalRate
        self.m_injectionCost = p_injectionCost
        self.m_withdrawalCost = p_withdrawalCost
        
    # define the diffusion cone for parallelism
    # p_regionByProcessor         region (min max) treated by the processor for the different regimes treated
    # returns in each dimension the min max values in the stock that can be reached from the grid p_gridByProcessor for each regime
    def getCone(self, p_regionByProcessor) :
        
        extrGrid = np.zeros(1)
        extrGrid[0] = p_regionByProcessor[0] - self.m_withdrawalRate
        extrGrid[1] = p_regionByProcessor[1] + self.m_injectionRate
        
        return extrGrid
    
        
    # defines a step in optimization
    # p_grid      grid at arrival step after command
    # p_stock     coordinate of the stock point to treat
    # p_condEsp   conditional expectation operator
    # p_phiIn     for each regime  gives the solution calculated at the previous step ( next time step by Dynamic Programming resolution)
    # for each regimes (column) gives the solution for each particle (row)
    def stepOptimize(self, p_grid, p_stock, p_condEsp, p_phiIn) :
        
        nbSimul = self.m_simulator.getNbSimul()
        actuStep = self.m_simulator.getActuStep()
        solutionAndControl = list(range(2))
        solutionAndControl[0] = np.zeros((nbSimul, 1))
        solutionAndControl[1] = np.zeros((nbSimul, 1))
        # Spot price
        spotPrice = self.m_simulator.fromParticlesToSpot(self.m_simulator.getParticles())
        # level if injection
        # size of the stock
        maxStorage = p_grid.getExtremeValues()[0][1]
        injectionMax = min(maxStorage - p_stock[0], self.m_injectionRate)
        injectionStock = p_stock + injectionMax
        # level if withdrawal
        # level min of the stock
        minStorage = p_grid.getExtremeValues()[0][0]
        withdrawalMax = min(p_stock[0] - minStorage, self.m_withdrawalRate)
        withdrawalStock = p_stock - withdrawalMax
        
        if (injectionMax < -1e-10):
            solutionAndControl[0].fill(-1.e30)
            solutionAndControl[1].fill(0.)
            
            # not an admissible point
            return solutionAndControl
        
        condExpSameStock = []
        
        # Suppose that non injection and no withdrawal
        #############################################
        # create interpolator at current stock point
        if p_grid.isInside(p_stock):
            interpolatorCurrentStock = p_grid.createInterpolator(p_stock)
            # cash flow at current stock and previous step
            cashSameStock = interpolatorCurrentStock.applyVec(p_phiIn[0])
            # conditional expectation at current stock point
            condExpSameStock = actuStep * p_condEsp[0].getAllSimulations(interpolatorCurrentStock).squeeze()
            
        # injection
        ###########
        gainInjection = []
        
        if (injectionMax > 0):
            # interpolator for stock level if injection
            interpolatorInjectionStock = p_grid.createInterpolator(injectionStock)
            # cash flow  at previous step at injection level
            cashInjectionStock = interpolatorInjectionStock.applyVec(p_phiIn[0]).squeeze()
            # conditional expectation at injection stock level
            condExpInjectionStock = actuStep * p_condEsp[0].getAllSimulations(interpolatorInjectionStock).squeeze()
            # instantaneous gain if injection
            gainInjection = -injectionMax * (spotPrice + self.m_injectionCost)
        
        # withdrawal
        ############
        gainWithdrawal = []
        
        if (withdrawalMax >0):
            # interpolator for stock level if withdrawal
            interpolatorWithdrawalStock = p_grid.createInterpolator(withdrawalStock)
            # cash flow  at previous step at injection level
            cashWithdrawalStock = interpolatorWithdrawalStock.applyVec(p_phiIn[0]).squeeze()
            # conditional expectation at withdrawal stock level
            condExpWithdrawalStock = actuStep * p_condEsp[0].getAllSimulations(interpolatorWithdrawalStock).squeeze()
            # instantaneous gain if withdrawal
            gainWithdrawal = withdrawalMax * (spotPrice - self.m_withdrawalCost)
        
        # do the arbitrage
        ##################
        if (len(gainWithdrawal) > 0) & (len(gainInjection) > 0):
            # all point admissible
            solutionAndControl[0][:,0] = np.multiply(actuStep, cashSameStock).transpose()
            solutionAndControl[1][:,0] = 0.
            espCondInjection = gainInjection + condExpInjectionStock
            espCondInjectionSuperiorToCondExpSameStock = espCondInjection > condExpSameStock
            
            solutionAndControl[0][:,0] = np.where(espCondInjectionSuperiorToCondExpSameStock, gainInjection + actuStep * cashInjectionStock, solutionAndControl[0][:,0])
            solutionAndControl[1][:,0] = np.where(espCondInjectionSuperiorToCondExpSameStock, injectionMax,  solutionAndControl[1][:,0])
            condExpSameStock = np.where(espCondInjectionSuperiorToCondExpSameStock, espCondInjection, condExpSameStock)
            
            espCondWithdrawal = gainWithdrawal + condExpWithdrawalStock
            
            solutionAndControl[0][:,0] = np.where(espCondWithdrawal > condExpSameStock, gainWithdrawal + actuStep * cashWithdrawalStock, solutionAndControl[0][:,0])
            solutionAndControl[1][:,0] = np.where(espCondWithdrawal > condExpSameStock, - withdrawalMax,  solutionAndControl[1][:,0])
            
        elif len(gainWithdrawal) > 0:
            
            if len(condExpSameStock) > 0:
                solutionAndControl[0][:,0] = np.multiply(actuStep, cashSameStock).transpose()
                solutionAndControl[1][:,0] = 0.
                espCondWithdrawal = gainWithdrawal + condExpWithdrawalStock
                
                solutionAndControl[0][:,0] = np.where(espCondWithdrawal > condExpSameStock, gainWithdrawal + actuStep * cashWithdrawalStock, solutionAndControl[0][:,0])
                solutionAndControl[1][:,0] = np.where(espCondWithdrawal > condExpSameStock, - withdrawalMax, solutionAndControl[1][:,0])
                    
            else:
                solutionAndControl[0][:,0] = gainWithdrawal + actuStep * cashWithdrawalStock
                solutionAndControl[1][:,0] = - withdrawalMax
                
        elif len(gainInjection) > 0:
            
            if len(condExpSameStock) > 0:
                solutionAndControl[0][:,0] = np.multiply(actuStep, cashSameStock).transpose()
                solutionAndControl[1][:,0] = 0.
                espCondInjection = gainInjection + condExpInjectionStock
                espCondInjectionSuperiorToCondExpSameStock = espCondInjection > condExpSameStock
                
                solutionAndControl[0][:,0] = np.where(espCondInjectionSuperiorToCondExpSameStock, gainInjection + actuStep * cashInjectionStock, solutionAndControl[0][:,0])
                solutionAndControl[1][:,0] = np.where(espCondInjectionSuperiorToCondExpSameStock, injectionMax, solutionAndControl[1][:,0])
                
            else:
                solutionAndControl[0][:,0] = gainInjection + actuStep * cashInjectionStock
                solutionAndControl[1][:,0] = injectionMax
                
        return solutionAndControl
        
    # get number of regimes
    def getNbRegime(self) :
  
        return 1
    
    # number of controls
    def getNbControl(self):
        
        return 1
    
    # defines a step in simulation
    # Notice that this implementation is not optimal. In fact no interpolation is necessary for this asset.
    # This implementation is for test and example purpose
    # p_grid          grid at arrival step after command
    # p_continuation  defines the continuation operator for each regime
    # p_state         defines the state value (modified)
    # p_phiInOut      defines the value function (modified)
    def stepSimulate(self, p_grid, p_continuation, p_state, p_phiInOut) :
        actuStep = self.m_simulator.getActuStep()
        actu = self.m_simulator.getActu()
        # optimal stock attained
        ptStockCur = p_state.getPtStock()
        control = np.zeros_like(ptStockCur)
        # spot price
        spotPrice = self.m_simulator.fromOneParticleToSpot(p_state.getStochasticRealization())
        espCondMax = -1.e30
        
        if p_grid.isInside(ptStockCur):
            continuationDoNothing = actuStep * p_continuation[0].getValue(p_state.getPtStock(), p_state.getStochasticRealization())
            espCondMax = continuationDoNothing
            
        # gain to add at current point
        phiAdd = 0
        # size of the stock
        maxStorage = p_grid.getExtremeValues()[0][1]
        # if injection
        injectionMax = min(maxStorage - p_state.getPtStock()[0], self.m_injectionRate)
        
        if injectionMax>0:
            continuationInjection = actuStep * p_continuation[0].getValue(p_state.getPtStock() + injectionMax, p_state.getStochasticRealization())
            gainInjection = - injectionMax * (spotPrice + self.m_injectionCost)
            espCondInjection = gainInjection + continuationInjection
            
            if espCondInjection > espCondMax :
                espCondMax = espCondInjection
                phiAdd = gainInjection
                control[0] = injectionMax
                
        # if withdrawal
        # level min of the stock
        minStorage = p_grid.getExtremeValues()[0][0]
        withdrawalMax = min(p_state.getPtStock()[0] - minStorage, self.m_withdrawalRate)
        
        if withdrawalMax >0:
            gainWithdrawal = withdrawalMax * (spotPrice - self.m_withdrawalCost)
            continuationWithdrawal = actuStep * p_continuation[0].getValue(p_state.getPtStock() - withdrawalMax, p_state.getStochasticRealization())
            espCondWithdrawal = gainWithdrawal + continuationWithdrawal
            if espCondWithdrawal > espCondMax :
                espCondMax = espCondWithdrawal
                phiAdd = gainWithdrawal
                control[0] = -withdrawalMax
        # for return
        p_state.setPtStock(ptStockCur+control)
        p_phiInOut += phiAdd * actu
         
    # Defines a step in simulation using interpolation in controls
    # p_grid          grid at arrival step after command
    # p_control       defines the controls
    # p_state         defines the state value (modified)
    # p_phiInOut      defines the value function (modified): size number of functions to follow
    def stepSimulateControl(self, p_grid, p_control, p_state, p_phiInOut):
        actu = self.m_simulator.getActu()
        ptStock = p_state.getPtStock()
        # spot price
        spotPrice = self.m_simulator.fromOneParticleToSpot(p_state.getStochasticRealization())
        # optimal control
        control = p_control[0].getValue(p_state.getPtStock(), p_state.getStochasticRealization())
        maxStorage = p_grid.getExtremeValues()[0][1]
        minStorage = p_grid.getExtremeValues()[0][0]
        control = max(min(maxStorage - ptStock[0], control), minStorage - ptStock[0])
        
        if control > 0:
            p_phiInOut[0] -= control * (spotPrice + self.m_injectionCost) * actu
        
        elif control < 0:
            p_phiInOut[0] -= control * (spotPrice - self.m_withdrawalCost) * actu
            
        ptStock[0] += control
        p_state.setPtStock(ptStock)
        
    # get size of the  function to follow in simulation
    def getSimuFuncSize(self):
        
        return 1
        
    # store the simulator
    def setSimulator(self, p_simulator):
        
        self.m_simulator = p_simulator
        
    # get the simulator back
    def getSimulator(self):
        
        return self.m_simulator