1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
|
#! /usr/bin/env python
import math
from numpy import *
def i4_bit_hi1 ( n ):
#*****************************************************************************80
#
## I4_BIT_HI1 returns the position of the high 1 bit base 2 in an integer.
#
# Example:
#
# N Binary BIT
# ---- -------- ----
# 0 0 0
# 1 1 1
# 2 10 2
# 3 11 2
# 4 100 3
# 5 101 3
# 6 110 3
# 7 111 3
# 8 1000 4
# 9 1001 4
# 10 1010 4
# 11 1011 4
# 12 1100 4
# 13 1101 4
# 14 1110 4
# 15 1111 4
# 16 10000 5
# 17 10001 5
# 1023 1111111111 10
# 1024 10000000000 11
# 1025 10000000001 11
#
# Licensing:
#
# This code is distributed under the MIT license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original MATLAB version by John Burkardt.
# PYTHON version by Corrado Chisari
#
# Parameters:
#
# Input, integer N, the integer to be measured.
# N should be nonnegative. If N is nonpositive, the value will always be 0.
#
# Output, integer BIT, the number of bits base 2.
#
i = int ( n )
bit = 0
while ( True ):
if ( i <= 0 ):
break
bit += 1
i = ( i // 2 )
return bit
def i4_bit_lo0 ( n ):
#*****************************************************************************80
#
## I4_BIT_LO0 returns the position of the low 0 bit base 2 in an integer.
#
# Example:
#
# N Binary BIT
# ---- -------- ----
# 0 0 1
# 1 1 2
# 2 10 1
# 3 11 3
# 4 100 1
# 5 101 2
# 6 110 1
# 7 111 4
# 8 1000 1
# 9 1001 2
# 10 1010 1
# 11 1011 3
# 12 1100 1
# 13 1101 2
# 14 1110 1
# 15 1111 5
# 16 10000 1
# 17 10001 2
# 1023 1111111111 1
# 1024 10000000000 1
# 1025 10000000001 1
#
# Licensing:
#
# This code is distributed under the MIT license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original MATLAB version by John Burkardt.
# Python version by Corrado Chisari
#
# Parameters:
#
# Input, integer N, the integer to be measured.
# N should be nonnegative.
#
# Output, integer BIT, the position of the low 1 bit.
#
bit = 0
i = int ( n )
while ( 1 ):
bit = bit + 1
i2 = ( i // 2 )
if ( i == 2 * i2 ):
break
i = i2
return bit
def i4_sobol_generate ( m, n, skip ):
#*****************************************************************************80
#
## I4_SOBOL_GENERATE generates a Sobol dataset.
#
# Licensing:
#
# This code is distributed under the MIT license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original MATLAB version by John Burkardt.
# PYTHON version by Corrado Chisari
#
# Parameters:
#
# Input, integer M, the spatial dimension.
#
# Input, integer N, the number of points to generate.
#
# Input, integer SKIP, the number of initial points to skip.
#
# Output, real R(M,N), the points.
#
r=zeros((m,n))
for j in range (1, n+1):
seed = skip + j - 2
[ r[0:m,j-1], seed ] = i4_sobol ( m, seed )
return r
def i4_sobol ( dim_num, seed ):
#*****************************************************************************80
#
## I4_SOBOL generates a new quasirandom Sobol vector with each call.
#
# Discussion:
#
# The routine adapts the ideas of Antonov and Saleev.
#
# Licensing:
#
# This code is distributed under the MIT license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original FORTRAN77 version by Bennett Fox.
# MATLAB version by John Burkardt.
# PYTHON version by Corrado Chisari
#
# Reference:
#
# Antonov, Saleev,
# USSR Computational Mathematics and Mathematical Physics,
# olume 19, 1980, pages 252 - 256.
#
# Paul Bratley, Bennett Fox,
# Algorithm 659:
# Implementing Sobol's Quasirandom Sequence Generator,
# ACM Transactions on Mathematical Software,
# Volume 14, Number 1, pages 88-100, 1988.
#
# Bennett Fox,
# Algorithm 647:
# Implementation and Relative Efficiency of Quasirandom
# Sequence Generators,
# ACM Transactions on Mathematical Software,
# Volume 12, Number 4, pages 362-376, 1986.
#
# Ilya Sobol,
# USSR Computational Mathematics and Mathematical Physics,
# Volume 16, pages 236-242, 1977.
#
# Ilya Sobol, Levitan,
# The Production of Points Uniformly Distributed in a Multidimensional
# Cube (in Russian),
# Preprint IPM Akad. Nauk SSSR,
# Number 40, Moscow 1976.
#
# Parameters:
#
# Input, integer DIM_NUM, the number of spatial dimensions.
# DIM_NUM must satisfy 1 <= DIM_NUM <= 40.
#
# Input/output, integer SEED, the "seed" for the sequence.
# This is essentially the index in the sequence of the quasirandom
# value to be generated. On output, SEED has been set to the
# appropriate next value, usually simply SEED+1.
# If SEED is less than 0 on input, it is treated as though it were 0.
# An input value of 0 requests the first (0-th) element of the sequence.
#
# Output, real QUASI(DIM_NUM), the next quasirandom vector.
#
global atmost
global dim_max
global dim_num_save
global initialized
global lastq
global log_max
global maxcol
global poly
global recipd
global seed_save
global v
if ( not 'initialized' in globals().keys() ):
initialized = 0
dim_num_save = -1
if ( not initialized or dim_num != dim_num_save ):
initialized = 1
dim_max = 40
dim_num_save = -1
log_max = 30
seed_save = -1
#
# Initialize (part of) V.
#
v = zeros((dim_max,log_max))
v[0:40,0] = transpose([ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])
v[2:40,1] = transpose([ \
1, 3, 1, 3, 1, 3, 3, 1, \
3, 1, 3, 1, 3, 1, 1, 3, 1, 3, \
1, 3, 1, 3, 3, 1, 3, 1, 3, 1, \
3, 1, 1, 3, 1, 3, 1, 3, 1, 3 ])
v[3:40,2] = transpose([ \
7, 5, 1, 3, 3, 7, 5, \
5, 7, 7, 1, 3, 3, 7, 5, 1, 1, \
5, 3, 3, 1, 7, 5, 1, 3, 3, 7, \
5, 1, 1, 5, 7, 7, 5, 1, 3, 3 ])
v[5:40,3] = transpose([ \
1, 7, 9,13,11, \
1, 3, 7, 9, 5,13,13,11, 3,15, \
5, 3,15, 7, 9,13, 9, 1,11, 7, \
5,15, 1,15,11, 5, 3, 1, 7, 9 ])
v[7:40,4] = transpose([ \
9, 3,27, \
15,29,21,23,19,11,25, 7,13,17, \
1,25,29, 3,31,11, 5,23,27,19, \
21, 5, 1,17,13, 7,15, 9,31, 9 ])
v[13:40,5] = transpose([ \
37,33, 7, 5,11,39,63, \
27,17,15,23,29, 3,21,13,31,25, \
9,49,33,19,29,11,19,27,15,25 ])
v[19:40,6] = transpose([ \
13, \
33,115, 41, 79, 17, 29,119, 75, 73,105, \
7, 59, 65, 21, 3,113, 61, 89, 45,107 ])
v[37:40,7] = transpose([ \
7, 23, 39 ])
#
# Set POLY.
#
poly= [ \
1, 3, 7, 11, 13, 19, 25, 37, 59, 47, \
61, 55, 41, 67, 97, 91, 109, 103, 115, 131, \
193, 137, 145, 143, 241, 157, 185, 167, 229, 171, \
213, 191, 253, 203, 211, 239, 247, 285, 369, 299 ]
atmost = 2**log_max - 1
#
# Find the number of bits in ATMOST.
#
maxcol = i4_bit_hi1 ( atmost )
#
# Initialize row 1 of V.
#
v[0,0:maxcol] = 1
#
# Things to do only if the dimension changed.
#
if ( dim_num != dim_num_save ):
#
# Check parameters.
#
if ( dim_num < 1 or dim_max < dim_num ):
print('I4_SOBOL - Fatal error!')
print(' The spatial dimension DIM_NUM should satisfy:')
print(' 1 <= DIM_NUM <= %d'%dim_max)
print(' But this input value is DIM_NUM = %d'%dim_num)
return
dim_num_save = dim_num
#
# Initialize the remaining rows of V.
#
for i in range(2 , dim_num+1):
#
# The bits of the integer POLY(I) gives the form of polynomial I.
#
# Find the degree of polynomial I from binary encoding.
#
j = poly[i-1]
m = 0
while ( 1 ):
j = math.floor ( j / 2. )
if ( j <= 0 ):
break
m = m + 1
#
# Expand this bit pattern to separate components of the logical array INCLUD.
#
j = poly[i-1]
includ=zeros(m)
for k in range(m, 0, -1):
j2 = math.floor ( j / 2. )
includ[k-1] = (j != 2 * j2 )
j = j2
#
# Calculate the remaining elements of row I as explained
# in Bratley and Fox, section 2.
#
for j in range( m+1, maxcol+1 ):
newv = v[i-1,j-m-1]
l = 1
for k in range(1, m+1):
l = 2 * l
if ( includ[k-1] ):
newv = bitwise_xor ( int(newv), int(l * v[i-1,j-k-1]) )
v[i-1,j-1] = newv
#
# Multiply columns of V by appropriate power of 2.
#
l = 1
for j in range( maxcol-1, 0, -1):
l = 2 * l
v[0:dim_num,j-1] = v[0:dim_num,j-1] * l
#
# RECIPD is 1/(common denominator of the elements in V).
#
recipd = 1.0 / ( 2 * l )
lastq=zeros(dim_num)
seed = int(math.floor ( seed ))
if ( seed < 0 ):
seed = 0
if ( seed == 0 ):
l = 1
lastq=zeros(dim_num)
elif ( seed == seed_save + 1 ):
#
# Find the position of the right-hand zero in SEED.
#
l = i4_bit_lo0 ( seed )
elif ( seed <= seed_save ):
seed_save = 0
l = 1
lastq=zeros(dim_num)
for seed_temp in range( int(seed_save), int(seed)):
l = i4_bit_lo0 ( seed_temp )
for i in range(1 , dim_num+1):
lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) )
l = i4_bit_lo0 ( seed )
elif ( seed_save + 1 < seed ):
for seed_temp in range( int(seed_save + 1), int(seed) ):
l = i4_bit_lo0 ( seed_temp )
for i in range(1, dim_num+1):
lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) )
l = i4_bit_lo0 ( seed )
#
# Check that the user is not calling too many times!
#
if ( maxcol < l ):
print('I4_SOBOL - Fatal error!')
print(' Too many calls!')
print(' MAXCOL = %d\n'%maxcol)
print(' L = %d\n'%l)
return
#
# Calculate the new components of QUASI.
#
quasi=zeros(dim_num)
for i in range( 1, dim_num+1):
quasi[i-1] = lastq[i-1] * recipd
lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) )
seed_save = seed
seed = seed + 1
return [ quasi, seed ]
def i4_uniform ( a, b, seed ):
#*****************************************************************************80
#
## I4_UNIFORM returns a scaled pseudorandom I4.
#
# Discussion:
#
# The pseudorandom number will be scaled to be uniformly distributed
# between A and B.
#
# Licensing:
#
# This code is distributed under the MIT license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original MATLAB version by John Burkardt.
# PYTHON version by Corrado Chisari
#
# Reference:
#
# Paul Bratley, Bennett Fox, Linus Schrage,
# A Guide to Simulation,
# Springer Verlag, pages 201-202, 1983.
#
# Pierre L'Ecuyer,
# Random Number Generation,
# in Handbook of Simulation,
# edited by Jerry Banks,
# Wiley Interscience, page 95, 1998.
#
# Bennett Fox,
# Algorithm 647:
# Implementation and Relative Efficiency of Quasirandom
# Sequence Generators,
# ACM Transactions on Mathematical Software,
# Volume 12, Number 4, pages 362-376, 1986.
#
# Peter Lewis, Allen Goodman, James Miller
# A Pseudo-Random Number Generator for the System/360,
# IBM Systems Journal,
# Volume 8, pages 136-143, 1969.
#
# Parameters:
#
# Input, integer A, B, the minimum and maximum acceptable values.
#
# Input, integer SEED, a seed for the random number generator.
#
# Output, integer C, the randomly chosen integer.
#
# Output, integer SEED, the updated seed.
#
if ( seed == 0 ):
print('I4_UNIFORM - Fatal error!')
print(' Input SEED = 0!')
seed = math.floor ( seed )
a = round ( a )
b = round ( b )
seed = mod ( seed, 2147483647 )
if ( seed < 0 ) :
seed = seed + 2147483647
k = math.floor ( seed / 127773 )
seed = 16807 * ( seed - k * 127773 ) - k * 2836
if ( seed < 0 ):
seed = seed + 2147483647
r = seed * 4.656612875E-10
#
# Scale R to lie between A-0.5 and B+0.5.
#
r = ( 1.0 - r ) * ( min ( a, b ) - 0.5 ) + r * ( max ( a, b ) + 0.5 )
#
# Use rounding to convert R to an integer between A and B.
#
value = round ( r )
value = max ( value, min ( a, b ) )
value = min ( value, max ( a, b ) )
c = value
return [ int(c), int(seed) ]
def prime_ge ( n ):
#*****************************************************************************80
#
## PRIME_GE returns the smallest prime greater than or equal to N.
#
# Example:
#
# N PRIME_GE
#
# -10 2
# 1 2
# 2 2
# 3 3
# 4 5
# 5 5
# 6 7
# 7 7
# 8 11
# 9 11
# 10 11
#
# Licensing:
#
# This code is distributed under the MIT license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original MATLAB version by John Burkardt.
# PYTHON version by Corrado Chisari
#
# Parameters:
#
# Input, integer N, the number to be bounded.
#
# Output, integer P, the smallest prime number that is greater
# than or equal to N.
#
p = max ( math.ceil ( n ), 2 )
while ( not isprime ( p ) ):
p = p + 1
return p
def isprime(n):
#*****************************************************************************80
#
## IS_PRIME returns True if N is a prime number, False otherwise
#
# Licensing:
#
# This code is distributed under the MIT license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Corrado Chisari
#
# Parameters:
#
# Input, integer N, the number to be checked.
#
# Output, boolean value, True or False
#
if n!=int(n) or n<1:
return False
p=2
while p<n:
if n%p==0:
return False
p+=1
return True
|