1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
# Copyright (C) 2016 EDF, 2017, 2018 EDF
# All Rights Reserved
# This code is published under the GNU Lesser General Public License (GNU LGPL)
import os.path as osp
import sys
sys.path.append(osp.abspath(osp.dirname(osp.dirname(__file__))))
import numpy as np
import math
import random
import unittest
# Ornstein Uhlenbeck simulator
# Ornstein Uhlenbeck simulator
class MeanRevertingSimulator :
# Actualize trend
def actualizeTrend(self) :
self.m_trend = 0
for i in list(range(len(self.m_sigma))) :
self.m_trend += pow(self.m_sigma[i], 2.) / (2 * self.m_mr[i]) * (1 - math.exp(-2 * self.m_mr[i] * self.m_currentStep))
self.m_trend *= 0.5
# Constructor
# p_curve Initial forward curve
# p_sigma Volatility of each factor
# p_mr Mean reverting per factor
# p_r Interest rate
# p_T Maturity
# p_nbStep Number of time step for simulation
# p_nbSimul Number of simulations for the Monte Carlo
# p_bForward true if the simulator is forward, false if the simulation is backward
def __init__(self, p_curve, p_sigma, p_mr, p_r,p_T, p_nbStep, p_nbSimul, p_bForward) :
self.m_curve = p_curve
self.m_sigma = p_sigma
self.m_mr = p_mr
self.m_r = p_r
self.m_T = p_T
self.m_step = p_T / p_nbStep
self.m_nbStep = p_nbStep
self.m_nbSimul = p_nbSimul
self.m_bForward = p_bForward
self.m_currentStep = 0. if p_bForward else p_T
self.m_OUProcess = np.zeros((len(p_sigma), p_nbSimul))
np.random.seed(0)
if self.m_bForward :
self.m_OUProcess = np.zeros((len(p_sigma), p_nbSimul))
else :
#for i in list(range(self.m_OUProcess.shape[0])) :
stDev = self.m_sigma * math.sqrt((1 - math.exp(-2 * self.m_mr * self.m_T)) / (2 * self.m_mr))
self.m_OUProcess = stDev * np.random.randn(len(p_sigma), p_nbSimul)
self.actualizeTrend()
# a step forward for OU process
def forwardStepForOU(self) :
racine = math.sqrt((1 - np.exp(-2 * self.m_mr * self.m_step)) / (2 * self.m_mr))
stDev = self.m_sigma * racine
expActu = np.exp(-self.m_mr * self.m_step)
normalSample = np.random.randn(len(self.m_sigma), self.m_nbSimul)
increment = np.multiply(stDev, normalSample)
# update OU process
self.m_OUProcess = np.multiply(self.m_OUProcess, expActu) + increment
# a step backward for OU process
def backwardStepForOU(self) :
if self.m_currentStep <= 0. :
self.m_OUProcess = np.zeros((len(self.m_sigma), self.m_nbSimul))
else :
# use brownian bridge
util = np.sinh(self.m_mr * self.m_currentStep) / np.sinh(self.m_mr * (self.m_currentStep + self.m_step))
variance = pow(self.m_sigma, 2.) / (2* self.m_mr)* ((1 - np.exp(-2 * self.m_mr * self.m_currentStep)) * pow(1 - np.exp(-self.m_mr * self.m_step)*util, 2.) + (1 - np.exp(-2 * self.m_mr * self.m_step))* pow(util, 2.))
stdDev = np.sqrt(variance)
self.m_OUProcess = self.m_OUProcess*util + np.einsum( "i,ij->ij",stdDev,np.random.randn(len(self.m_sigma), self.m_nbSimul))
self.actualizeTrend()
# get current markov state
def getParticles(self) :
return self.m_OUProcess
# get one simulation
# p_isim simulation number
# return the particle associated to p_isim
# get current markov state
def getOneParticle(self, p_isim) :
return self.m_OUProcess[:,p_isim]
# a step forward for simulations
def stepForward(self) :
if self.m_bForward == False :
pass
else :
self.m_currentStep += self.m_step
self.actualizeTrend()
self.forwardStepForOU()
# return the asset values (asset,simulations)
def stepBackward(self) :
if self.m_bForward == True :
pass
else :
self.m_currentStep -= self.m_step
self.actualizeTrend()
self.backwardStepForOU()
# a step forward for simulations
# return the asset values (asset,simulations)
def stepForwardAndGetParticles(self) :
if self.m_bForward == False :
pass
else :
self.m_currentStep += self.m_step
self.actualizeTrend()
self.forwardStepForOU()
return self.m_OUProcess
# a step backward for simulations
# return the asset values (asset,simulations)
def stepBackwardAndGetParticles(self) :
if self.m_bForward == True :
pass
else :
self.m_currentStep -= self.m_step
self.actualizeTrend()
self.backwardStepForOU()
return self.m_OUProcess
# From particles simulation for an OU process, get spot price
# p_particles (dimension of the problem by number of simulations)
# return spot price for all simulations
def fromParticlesToSpot(self, p_particles) :
values = np.zeros(p_particles.shape[1])
curveCurrent = self.m_curve.get(self.m_currentStep)
#for i in range(self.m_nbSimul) :
values = np.multiply(curveCurrent, np.exp(-self.m_trend + np.sum(p_particles,axis=0)))
return values
# From one particle simulation for an OU process, get spot price
# p_oneParticle One particle
# return spot value
def fromOneParticleToSpot(self, p_oneParticle) :
curveCurrent = self.m_curve.get(self.m_currentStep)
return curveCurrent * math.exp(-self.m_trend + np.sum(p_oneParticle))
# get back asset spot value
def getAssetValues(self) :
return self.fromParticlesToSpot(self.m_OUProcess)
# get back asset spot value
# p_isim simulation particle number
# return spot value for this particle
def getAssetValues2(self, p_isim) :
return self.m_curve.get(self.m_currentStep) * math.exp(-self.m_trend + sum(self.m_OUProcess[:,p_isim]))
# Get back attribute
def getCurrentStep(self) :
return self.m_currentStep
def getT(self) :
return self.m_T
def getStep(self) :
return self.m_step
def getSigma(self) :
return self.m_sigma
def getMr(self) :
return self.m_mr
def getNbSimul(self) :
return self.m_nbSimul
def getNbSample(self) :
return 1
def getNbStep(self) :
return self.m_nbStep
def getDimension(self) :
return len(self.m_sigma)
# actualize at date t=0
def getActu(self):
return math.exp(- self.m_r* self.m_currentStep )
# actualize on one step
def getActuStep(self):
return math.exp(- self.m_r* self.m_step )
# forward or backward update
# p_date current date in simulator
def updateDates(self, p_date) :
if self.m_bForward :
if p_date > 0. :
self.stepForward()
else :
self.stepBackward()
# forward or backward update for time
def resetTime(self) :
if self.m_bForward :
self.m_currentStep = 0.
self.m_OUProcess = 0.
else :
self.m_currentStep = self.m_T
stDev = self.m_sigma * math.sqrt((1 - math.exp(-2 * self.m_mr * self.m_T)) / (2 * self.m_mr))
self.m_OUProcess = stDev * np.random.randn(len(self.m_sigma), self.m_nbSimul)
self.actualizeTrend()
# update the number of simulations (forward only)
# p_nbSimul Number of simulations to update
# p_nbSample Number of sample to update, useless here
def updateSimulationNumberAndResetTime(self, p_nbSimul, p_nbSample) :
if self.m_bForward == False :
pass
else :
self.m_nbSimul = p_nbSimul
self.m_OUProcess.reshape((len(self.m_sigma), p_nbSimul))
self.m_currentStep = 0.
self.m_OUProcess = 0.
self.actualizeTrend()
class MeanRevertingSimulatorTest(unittest.TestCase):
def test_callOption(self):
nstep = 10
timeGrid = odrsg.OneDimRegularSpaceGrid(0., 1. / nstep, nstep)
futValues = np.zeros(nstep + 1) + 100.
futureGrid = oddata.OneDimData(timeGrid, futValues)
sigma = np.zeros(1) + 0.25
mr = np.zeros(1) + 1.
T = 2.
nbStep = 10
nbSimul = 1000000
mrs = MeanRevertingSimulator(futureGrid, sigma, mr, T, nbStep, nbSimul, True)
b = MeanRevertingSimulator(futureGrid, sigma, mr, T, nbStep, nbSimul, False)
SF = np.zeros(nbStep / 2)
SB = np.zeros(nbStep / 2)
K = 100.
def compareList(l, res) :
for i in range(len(l)) :
res[i] = max(l[i], 0.)
return res
for i in range(nbStep / 2) :
particlesF = mrs.stepForwardAndGetParticles()
spotF = mrs.fromParticlesToSpot(particlesF)
lF = np.zeros(nbSimul)
compareList(spotF - K, lF)
SF[i] = np.mean(lF)
particlesB = b.stepBackwardAndGetParticles()
spotB = b.fromParticlesToSpot(particlesB)
lB = np.zeros(nbSimul)
compareList(spotB - K, lB)
SB[i] = np.mean(lB)
self.assertAlmostEqual(SF[nbStep/2-1], 7.069, None, None, 0.1)
self.assertAlmostEqual(SB[nbStep/2-1], SF[nbStep/2-1], None, None, 0.2)
if __name__ == '__main__':
unittest.main()
|