File: MeanRevertingSimulator.py

package info (click to toggle)
stopt 5.12%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,860 kB
  • sloc: cpp: 70,456; python: 5,950; makefile: 72; sh: 57
file content (307 lines) | stat: -rw-r--r-- 9,832 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# Copyright (C) 2016 EDF, 2017, 2018  EDF
# All Rights Reserved
# This code is published under the GNU Lesser General Public License (GNU LGPL)
import os.path as osp
import sys
sys.path.append(osp.abspath(osp.dirname(osp.dirname(__file__))))
import numpy as np
import math
import random 
import unittest


# Ornstein Uhlenbeck simulator


# Ornstein Uhlenbeck simulator
class MeanRevertingSimulator :
    
    # Actualize trend
    def actualizeTrend(self) :
        
        self.m_trend = 0
        
        for i in list(range(len(self.m_sigma))) :
            self.m_trend += pow(self.m_sigma[i], 2.) / (2 * self.m_mr[i]) * (1 - math.exp(-2 * self.m_mr[i] * self.m_currentStep))
            
        self.m_trend *= 0.5
        
    # Constructor
    # p_curve  Initial forward curve
    # p_sigma  Volatility of each factor
    # p_mr     Mean reverting per factor
    # p_r      Interest rate
    # p_T      Maturity
    # p_nbStep Number of time step for simulation
    # p_nbSimul Number of simulations for the Monte Carlo
    # p_bForward true if the simulator is forward, false if the simulation is backward
    def __init__(self, p_curve, p_sigma, p_mr, p_r,p_T, p_nbStep, p_nbSimul, p_bForward) :
        
        self.m_curve = p_curve
        self.m_sigma = p_sigma
        self.m_mr = p_mr
        self.m_r = p_r
        self.m_T = p_T
        self.m_step = p_T / p_nbStep
        self.m_nbStep = p_nbStep
        self.m_nbSimul = p_nbSimul
        self.m_bForward = p_bForward
        self.m_currentStep = 0. if p_bForward else p_T
        self.m_OUProcess = np.zeros((len(p_sigma), p_nbSimul))

        np.random.seed(0)

        if self.m_bForward :
            self.m_OUProcess = np.zeros((len(p_sigma), p_nbSimul))
        else :
            #for i in list(range(self.m_OUProcess.shape[0])) :
            stDev = self.m_sigma * math.sqrt((1 - math.exp(-2 * self.m_mr * self.m_T)) / (2 * self.m_mr))
            self.m_OUProcess = stDev * np.random.randn(len(p_sigma), p_nbSimul)
            
        self.actualizeTrend()

    # a step forward for OU process
    def forwardStepForOU(self) :
        
        racine = math.sqrt((1 - np.exp(-2 * self.m_mr * self.m_step)) / (2 * self.m_mr))
        stDev = self.m_sigma * racine
        expActu = np.exp(-self.m_mr * self.m_step)
        normalSample = np.random.randn(len(self.m_sigma), self.m_nbSimul)
        increment = np.multiply(stDev, normalSample)
        # update OU process
        self.m_OUProcess = np.multiply(self.m_OUProcess, expActu) + increment
        
    # a step backward for OU process
    def backwardStepForOU(self) :
        
        if self.m_currentStep <= 0. :
            self.m_OUProcess = np.zeros((len(self.m_sigma), self.m_nbSimul))
        else :
            # use brownian bridge
            util = np.sinh(self.m_mr * self.m_currentStep) / np.sinh(self.m_mr * (self.m_currentStep + self.m_step))
            variance = pow(self.m_sigma, 2.) / (2* self.m_mr)*  ((1 - np.exp(-2 * self.m_mr * self.m_currentStep)) * pow(1 - np.exp(-self.m_mr * self.m_step)*util, 2.) + (1 - np.exp(-2 * self.m_mr * self.m_step))* pow(util, 2.))
            stdDev = np.sqrt(variance)
            self.m_OUProcess = self.m_OUProcess*util + np.einsum( "i,ij->ij",stdDev,np.random.randn(len(self.m_sigma), self.m_nbSimul))

        self.actualizeTrend()

    # get  current markov state
    def getParticles(self) :        
        return self.m_OUProcess

    # get one simulation
    # p_isim  simulation number
    # return the particle associated to p_isim
    # get  current markov state
    def getOneParticle(self, p_isim) :
        
        return self.m_OUProcess[:,p_isim]

    # a step forward for simulations
    def stepForward(self) :
        
        if self.m_bForward == False :
            pass
        else :
            self.m_currentStep += self.m_step
            self.actualizeTrend()
            self.forwardStepForOU()

    # return  the asset values (asset,simulations)
    def stepBackward(self) :
        
        if self.m_bForward == True :
            pass
        else :
            self.m_currentStep -= self.m_step
            self.actualizeTrend()
            self.backwardStepForOU()

    # a step forward for simulations
    # return  the asset values (asset,simulations)
    def stepForwardAndGetParticles(self) :
        
        if self.m_bForward == False :
            pass
        else :
            self.m_currentStep += self.m_step
            self.actualizeTrend()
            self.forwardStepForOU()
            
            return self.m_OUProcess

    # a step backward for simulations
    # return  the asset values (asset,simulations)
    def stepBackwardAndGetParticles(self) :
        
        if self.m_bForward == True :
            pass
        else :
            self.m_currentStep -= self.m_step
            self.actualizeTrend()
            self.backwardStepForOU()
            
            return self.m_OUProcess

    # From particles simulation for an  OU process, get spot price
    # p_particles  (dimension of the problem by number of simulations)
    # return spot price for all simulations
    def fromParticlesToSpot(self, p_particles) :
        
        values = np.zeros(p_particles.shape[1])
        curveCurrent = self.m_curve.get(self.m_currentStep)

        #for i in range(self.m_nbSimul) :
        values = np.multiply(curveCurrent, np.exp(-self.m_trend + np.sum(p_particles,axis=0)))

        return values

    # From one particle simulation for an  OU process, get spot price
    # p_oneParticle  One particle
    # return spot value
    def fromOneParticleToSpot(self, p_oneParticle) :
        
        curveCurrent = self.m_curve.get(self.m_currentStep)
        return curveCurrent * math.exp(-self.m_trend + np.sum(p_oneParticle))

    # get back asset spot value
    def getAssetValues(self) :
        
        return self.fromParticlesToSpot(self.m_OUProcess)

    # get back asset spot value
    # p_isim  simulation particle number
    # return spot value for this particle
    def getAssetValues2(self, p_isim) :
         
        return self.m_curve.get(self.m_currentStep) * math.exp(-self.m_trend + sum(self.m_OUProcess[:,p_isim]))

    # Get back attribute
    
    def getCurrentStep(self) :
        
        return self.m_currentStep

    def getT(self) :
        
        return self.m_T

    def getStep(self) :
        
        return self.m_step

    def getSigma(self) :
        
        return self.m_sigma

    def getMr(self) :
        
        return self.m_mr

    def getNbSimul(self) :
        
        return self.m_nbSimul

    def getNbSample(self) :
        
        return 1

    def getNbStep(self) :
        
        return self.m_nbStep

    def getDimension(self) :
        
        return len(self.m_sigma)

    # actualize at date t=0
    def getActu(self):
        return math.exp(- self.m_r* self.m_currentStep )

    # actualize on one step
    def getActuStep(self):
        return math.exp(- self.m_r* self.m_step )

    
    # forward or backward update
    # p_date  current date in simulator
    def updateDates(self, p_date) :
        
        if self.m_bForward :
            if p_date > 0. :
                self.stepForward()
        else :
            self.stepBackward()

    # forward or backward update for time
    def resetTime(self) :
        
        if self.m_bForward :
            self.m_currentStep = 0.
            self.m_OUProcess = 0.
        else :
            self.m_currentStep = self.m_T
            stDev = self.m_sigma * math.sqrt((1 - math.exp(-2 * self.m_mr * self.m_T)) / (2 * self.m_mr))
            self.m_OUProcess = stDev * np.random.randn(len(self.m_sigma), self.m_nbSimul)

        self.actualizeTrend()

    # update the number of simulations (forward only)
    # p_nbSimul  Number of simulations to update
    # p_nbSample Number of sample to update, useless here
    def updateSimulationNumberAndResetTime(self, p_nbSimul, p_nbSample) :
        
        if self.m_bForward == False :
            pass
        else :
            self.m_nbSimul = p_nbSimul
            self.m_OUProcess.reshape((len(self.m_sigma), p_nbSimul))
            self.m_currentStep = 0.
            self.m_OUProcess = 0.
            self.actualizeTrend()


class MeanRevertingSimulatorTest(unittest.TestCase):

    def test_callOption(self):
        
        nstep = 10
        timeGrid = odrsg.OneDimRegularSpaceGrid(0., 1. / nstep, nstep)
        futValues = np.zeros(nstep + 1) + 100.
        futureGrid = oddata.OneDimData(timeGrid, futValues)
        sigma = np.zeros(1) + 0.25
        mr = np.zeros(1) + 1.
        T = 2.
        nbStep = 10
        nbSimul = 1000000
        
        mrs = MeanRevertingSimulator(futureGrid, sigma, mr, T, nbStep, nbSimul, True)
        b = MeanRevertingSimulator(futureGrid, sigma, mr, T, nbStep, nbSimul, False)
        SF = np.zeros(nbStep / 2)
        SB = np.zeros(nbStep / 2)
        K = 100.
          
        def compareList(l, res) :
              
            for i in range(len(l)) :
                res[i] = max(l[i], 0.)
              
            return res
       
        for i in range(nbStep / 2) :
            particlesF = mrs.stepForwardAndGetParticles()
            spotF = mrs.fromParticlesToSpot(particlesF)
            lF = np.zeros(nbSimul)
            compareList(spotF - K, lF)
            SF[i] = np.mean(lF)
            particlesB = b.stepBackwardAndGetParticles()
            spotB = b.fromParticlesToSpot(particlesB)
            lB = np.zeros(nbSimul)
            compareList(spotB - K, lB)
            SB[i] = np.mean(lB)
            
        self.assertAlmostEqual(SF[nbStep/2-1], 7.069, None, None, 0.1)
        self.assertAlmostEqual(SB[nbStep/2-1], SF[nbStep/2-1], None, None, 0.2)
        
if __name__ == '__main__':
    unittest.main()