File: valueNext.py

package info (click to toggle)
stopt 5.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,772 kB
  • sloc: cpp: 70,373; python: 5,942; makefile: 67; sh: 57
file content (164 lines) | stat: -rw-r--r-- 5,297 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright (C) 2018 The Regents of the University of California, Michael Ludkovski and Aditya Maheshwari
# All Rights Reserved
# This code is published under the GNU Lesser General Public License (GNU LGPL)

from __future__ import division
import numpy as np
import math
import matplotlib.pyplot as plt
import microGrid.parameters as bv
import time

def penalty(param,inventory):
    return ((inventory - param.I0)**2)*0

def finalValue(param,demand,inventory):

    if param.rmctype == 'regress now 2D':
        nsim = len(demand)
        value = np.zeros((nsim,param.H+1))
        for q in range(param.H+1):
            value[:,q] = penalty(param,inventory)
        return value
    
    elif param.rmctype == 'gd':
        nsim = len(demand)
        gridI = len(inventory)

        value = np.zeros((nsim,gridI*(param.H+1)))
        for i in range(gridI):
            for q in range(param.H+1):
                value[:,q*gridI + i] = penalty(param,inventory[i])
        return value


def continuationVal(contValObject,x0,i0,q,nextInventory,nextq, type):

    if type=='regress now 2D':
        return contValObject.getValue([nextq],[x0,nextInventory])

    if type=='gd':
        return contValObject.getValue([nextInventory, nextq],[x0])


def currentCost(param,currentSt, control, switchCost):

    # assuming the cost function is of the type 
    # c1*d^a + c2*1{st>0} + c3*st*1{st<0}    
    cost = param.c1*(control**param.a)*param.dt + (param.c2*(currentSt if currentSt>0 else 0) + param.c3*(-currentSt if currentSt<0 else 0))*param.dt    
    if switchCost == "No":
        return cost
    else:
        return cost + param.K



def calculateCost(param,currentSt, contValObject, x0,i0,q,control,i1,q1,ohc,switchCost="No"):
    return currentCost(param,currentSt, control, switchCost) + max(continuationVal(contValObject,x0,i0,q,i1,q1,param.rmctype),0)


# one step optimization
def findOptimalControl(x0, i0, q, contValObject, param):

    B_max = param.B_minMax[1]
    B_min = param.B_minMax[0]

    I_max = param.I_minMax[1]
    I_min = param.I_minMax[0]

    maxOutputBattery = ((i0 - I_min)/param.dt)
    maxInputBattery = - (I_max - i0)/param.dt
    maxOutputBattery =  (B_max if maxOutputBattery>B_max else maxOutputBattery)
    maxInputBattery = (B_min if maxInputBattery<B_min else maxInputBattery)

    if param.controlType == "BangBang":
        possibleControl = np.zeros((1,2))
        possibleControl[:,0] = 0
        possibleControl[:,1] = x0*(x0>0) + np.abs(maxInputBattery)
    else:
        possibleControl = param.discrertize_d


    demandExContol = x0 - possibleControl; # nparray of shape (1 rows and 2 columns)
    

    St = np.where((demandExContol<=maxOutputBattery) & (demandExContol>=maxInputBattery),0,demandExContol)
    St = np.where((demandExContol>maxOutputBattery),demandExContol - maxOutputBattery,St)
    St = np.where((demandExContol<maxInputBattery),demandExContol - maxInputBattery,St)

    Bt = demandExContol - St

    nextInventory = i0 - Bt*param.dt

    nextq = np.ones_like(demandExContol)
    nextq[:,0] = 0

    contVal = np.zeros_like(demandExContol)

    if param.controlType == "BangBang":
        contVal[:,0] = continuationVal(contValObject,x0,i0,q,nextInventory[0,0],nextq[0,0], param.rmctype) 
        contVal[:,1] = continuationVal(contValObject,x0,i0,q,nextInventory[0,1],nextq[0,1], param.rmctype) 
    else:
        for i in range(len(param.discrertize_d[0,:])):
            contVal[:,i] = max(continuationVal(contValObject,x0,i0,q,nextInventory[0,i],nextq[0,i], param.rmctype),0) 

    cost = param.c1*(possibleControl**param.a)*param.dt + param.c2*np.where(St>0, St, 0)*param.dt  + param.c3*np.where(St<0, -St, 0)*param.dt + contVal


    if q==0:
        switchCost = np.zeros_like(demandExContol) + param.K
        switchCost[:,0] = 0
        cost=cost+switchCost

    if param.controlType == "BangBang":
        indx = possibleControl[:,1]<0.000001
        cost[indx,1]=10**11


    indx = np.argmin(cost,1)
    
    return cost[0, indx], possibleControl[0,indx], St[0,indx], nextInventory[0,indx], Bt[0,indx]




def optimization(contValObject, demand, inventory, param):

    regime = np.arange(0,param.H+1,1)
    lc = len(regime)
    nsim = len(demand)

    if param.rmctype == 'gd':
        gridI = len(inventory)
    elif param.rmctype == 'regress now 2D':
        gridI = 1

    value = np.zeros((nsim,lc*gridI))
    policy_d = np.zeros((nsim,lc*gridI))
    
    StOuput = np.zeros((nsim,lc*gridI))
    StOuput[:,:]=np.nan

    policy_m = np.zeros((nsim,lc*gridI))
    policy_m[:,:]=None

    # iteration over each sample of residual demand
    for i in range(nsim):

        # iteration over each regime
        for q in regime:
            
            if param.rmctype == 'gd':
                # if rmctype is grid-discretization (gd) then iterate over grid levels.
                for j in range(gridI):

                    value[i,q*gridI + j], policy_d[i,q*gridI + j], StOuput[i,q*gridI + j], _, _  = findOptimalControl(demand[i], inventory[j], q, contValObject, param)

            elif param.rmctype == 'regress now 2D':

                value[i,q], policy_d[i,q], StOuput[i,q], _, _  = findOptimalControl(demand[i], inventory[i], q, contValObject, param)


    return value,policy_d, StOuput