1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
# Copyright (C) 2016, 2018 EDF
# All Rights Reserved
# This code is published under the GNU Lesser General Public License (GNU LGPL)
import numpy as np
import math as maths
import random
import unittest
import math
# Implement a Black Scholes simulator
class BlackScholesSimulator :
# Constructor for Black Scholes simulator
# p_initialValues initial values for assets
# p_sigma volatility of assets
# p_mu trend for assets
# p_correl correlation for assets
# p_T maturity
# p_nbStep number of time step
# p_nbSimul number of simulations
# p_bForward true if the simulation is forward, false if backward
def __init__(self, p_initialValues, p_sigma, p_mu, p_correl, p_T, p_nbStep, p_nbSimul, p_bForward) :
self.m_initialValues = p_initialValues
self.m_sigma = p_sigma
self.m_mu = p_mu
self.corrFactTrans = np.linalg.cholesky(p_correl)
self.m_T = p_T
self.m_step = p_T / p_nbStep
self.m_nbStep = p_nbStep
self.m_nbSimul = p_nbSimul
self.m_bForward = p_bForward
self.m_currentStep = 0. if p_bForward else p_T # Current step during resolution
self.m_brownian = np.zeros((len(p_initialValues), p_nbSimul)) # store the brownian motion values (no correlation)
np.random.seed(0)
if self.m_bForward :
self.m_brownian = np.zeros((len(p_initialValues), p_nbSimul))
else :
sqrtT = maths.sqrt(self.m_T)
self.m_brownian = sqrtT * np.random.randn(len(p_initialValues), p_nbSimul)
# gets brownian motions correlated and send back asset values
def brownianToAsset(self) :
assetToReturn = np.zeros((len(self.m_initialValues), self.m_nbSimul))
firstTerm = (self.m_mu - 0.5 * self.m_sigma * self.m_sigma) * self.m_currentStep
assetToReturn[:,:] = (self.m_initialValues * np.exp(firstTerm + self.m_sigma * self.m_brownian.transpose())).transpose()
return assetToReturn
# a step forward for brownians
def forwardStepForBrownian(self) :
normalSample = np.random.randn(len(self.m_initialValues), self.m_nbSimul)
self.m_brownian = (np.multiply(maths.sqrt(self.m_currentStep), normalSample.transpose())).transpose() # Check shape normalSample = shape noise
# a step backward for brownians
def backwardStepForBrownian(self) :
if abs(self.m_currentStep - 0.) <= (0.01 * abs(0. + self.m_currentStep) * 10) :
self.m_brownian = np.zeros((len(self.m_initialValues), self.m_nbSimul))
else :
util1 = max(self.m_currentStep / (self.m_currentStep + self.m_step), 0.)
util2 = maths.sqrt(util1 * self.m_step)
# use brownian bridge
self.m_brownian = (np.multiply(util1, self.m_brownian) + np.multiply(util2, np.random.randn(len(self.m_initialValues), self.m_nbSimul)))
# get current asset values
def getParticles(self) :
return self.brownianToAsset()
# a step forward for simulations
def stepForward(self) :
if self.m_bForward == False :
pass
self.m_currentStep += self.m_step
self.forwardStepForBrownian()
# return the asset values (asset,simulations)
def stepBackward(self) :
if self.m_bForward == True :
pass
self.m_currentStep -= self.m_step
self.backwardStepForBrownian()
# a step forward for simulations
# return the asset values (asset,simulations)
def stepForwardAndGetParticles(self) :
if self.m_bForward == False :
pass
self.m_currentStep += self.m_step
self.forwardStepForBrownian()
return self.brownianToAsset()
# a step backward for simulations
# return the asset values (asset,simulations)
def stepBackwardAndGetParticles(self) :
if self.m_bForward == True :
pass
self.m_currentStep -= self.m_step
self.backwardStepForBrownian()
return self.brownianToAsset()
# Get back attribute
def getCurrentStep(self) :
return self.m_currentStep
def getT(self) :
return self.m_T
def getStep(self) :
return self.m_step
def getInitialValues(self) :
return self.m_initialValues
def getSigma(self) :
return self.m_sigma
def getMu(self) :
return self.m_mu
def getNbSimul(self) :
return self.m_nbSimul
def getNbStep(self) :
return self.m_nbStep
def getDimension(self) :
return len(self.m_sigma)
# actualize at date t=0
def getActu(self):
return math.exp(- self.m_mu[0]* self.m_currentStep )
# actualize on one step
def getActuStep(self):
return math.exp(- self.m_mu[0]* self.m_step )
class BlackScholesSimulatorTest(unittest.TestCase):
def test_callOption(self):
S_0 = np.zeros(2) + 100.
vol = np.zeros(2) + 0.25
mu = np.zeros(2) + 0.1
corr = np.eye(2)
T = 2.
nbStep = 10
nbSimul = 100000
K = 100.
ga = BlackScholesSimulator(S_0, vol, mu, corr, T, nbStep, nbSimul, True)
bu = BlackScholesSimulator(S_0, vol, mu, corr, T, nbStep, nbSimul, False)
SF = np.zeros(nbStep / 2)
SB = np.zeros(nbStep / 2)
def compareList(l, res) :
for i in list(range(len(l))) :
res[i] = max(l[i], 0.)
return res
for i in range(nbStep / 2) :
lF = np.zeros(nbSimul)
compareList(ga.stepForwardAndGetParticles()[0,:] - K,lF)
SF[i] = np.mean(lF * maths.exp(-mu[0] * T/2))
lB = np.zeros(nbSimul)
compareList(bu.stepBackwardAndGetParticles()[0,:] - K,lB)
SB[i] = np.mean(lB * maths.exp(-mu[0] * T/2))
self.assertAlmostEqual(SF[nbStep / 2 - 1], 15, None, None, 0.2)
self.assertAlmostEqual(SB[nbStep / 2 - 1], 15, None, None, 0.2)
self.assertAlmostEqual(SF[nbStep / 2 - 1], SB[nbStep / 2 - 1], None, None, 0.2)
def test_martingale(self):
S_0 = np.zeros(2) + 100.0
vol = np.zeros(2) + 0.25
mu = np.zeros(2)
corr = np.eye(2)
T = 10.
nbStep = 10
nbSimul = 1000000
K = 100.
dp = np.zeros(nbStep)
zor = BlackScholesSimulator(S_0, vol, mu, corr, T, nbStep, nbSimul, True)
for j in range(nbStep) :
dp[j] = np.mean(zor.stepForwardAndGetParticles()[0,:] * maths.exp(-mu[0] * (j + 1)))
self.assertAlmostEqual(dp[j], S_0[0], None, None, 0.2)
if __name__ == '__main__':
unittest.main()
|