File: testGasStorage.py

package info (click to toggle)
stopt 5.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,772 kB
  • sloc: cpp: 70,373; python: 5,942; makefile: 67; sh: 57
file content (160 lines) | stat: -rw-r--r-- 4,605 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/bin/python3

# Copyright (C) 2016 EDF
# All Rights Reserved
# This code is published under the GNU Lesser General Public License (GNU LGPL)
import numpy as np
import math
import utils.OneDimRegularSpaceGrid as rsg
import utils.OneDimData as data
import simulators.MeanRevertingSimulator as mrsim
import dp.OptimizeGasStorage as ogs
import dp.DynamicProgrammingByRegression as dyn
import StOptReg as reg
import StOptGrids
import unittest

accuracyClose = 1.5


class ZeroFunction :
    
    def __init__(self) :
        
        return None

    def set(self, a, b, c) :
        
        return 0.

# valorization of a given gas storage on a  grid
# p_grid             the grid
# p_maxLevelStorage  maximum level
def gasStorage(p_grid, p_maxLevelStorage) :
    
    # storage
    injectionRateStorage = 60000
    withdrawalRateStorage = 45000
    injectionCostStorage = 0.35
    withdrawalCostStorage = 0.35

    maturity = 1.
    nstep = 100

    # define a a time grid
    timeGrid = rsg.OneDimRegularSpaceGrid(np.zeros(1), maturity / nstep, nstep)
    # future values
    futValues = np.zeros(nstep + 1)
    
    # periodicity factor
    iPeriod = 52
    
    for i in list(range(nstep + 1)) :
        futValues[i] = 50. + 20 * math.sin((math.pi * i * iPeriod) / nstep)
        
    # define the future curve
    futureGrid = data.OneDimData(timeGrid, futValues)
    
    # one dimensional factors
    nDim = 1
    sigma = np.zeros(nDim) + 0.94
    mr = np.zeros(nDim) + 0.29
    # number of simulations
    nbsimulOpt = 20000
    
    # no actualization
    rate=0
    # a backward simulator
    bForward = False
    
    backSimulator = mrsim.MeanRevertingSimulator(futureGrid, sigma, mr, rate,maturity, nstep, nbsimulOpt, bForward)
    # optimizer
    storage = ogs.OptimizeGasStorage(injectionRateStorage, withdrawalRateStorage, injectionCostStorage, withdrawalCostStorage)
    
    # regressor
    nMesh = 6
    nbMesh = np.zeros(1, dtype = np.int32) + nMesh
    regressor = reg.LocalLinearRegression(nbMesh)
    # final value
    vFunction = ZeroFunction()
    
    # initial values
    initialStock = np.zeros(1) + p_maxLevelStorage
    initialRegime = 0 # only one regime
    
    # Optimize
    fileToDump = "CondExpGasStorage"
    
    # link the simulations to the optimizer
    storage.setSimulator(backSimulator)
    valueOptim = dyn.DynamicProgrammingByRegression(p_grid, storage, regressor, vFunction, initialStock, initialRegime, fileToDump)
    print("valueOptim", valueOptim)
    return valueOptim
            
class testGasStorageTest(unittest.TestCase):
          
    def test_simpleStorage(self):
              
        # storage
        #########
        maxLevelStorage = 90000
        # grid
        ######
        nGrid = 10
        lowValues = np.zeros(1)
        step = np.zeros(1) + (maxLevelStorage / nGrid)
        nbStep = np.zeros(1, dtype = np.int32) + nGrid
        grid = StOptGrids.RegularSpaceGrid(lowValues, step, nbStep)
              
        gasStorage(grid, maxLevelStorage)
     
    def test_simpleStorageLegendreLinear(self):
         
        # storage
        #########
        maxLevelStorage = 90000
        # grid
        ######
        nGrid = 10
        lowValues = np.zeros(1)
        step = np.zeros(1) + (maxLevelStorage / nGrid)
        nbStep = np.zeros(1, dtype = np.int32) + nGrid
        poly = np.zeros(1, dtype = np.int32) + 1
        grid = StOptGrids.RegularLegendreGrid(lowValues, step, nbStep, poly)
              
        gasStorage(grid, maxLevelStorage)
        
    def test_simpleStorageLegendreQuadratic(self):
        
        # storage
        #########
        maxLevelStorage = 90000
        # grid
        ######
        nGrid = 5
        lowValues = np.zeros(1)
        step = np.zeros(1) + (maxLevelStorage / nGrid)
        nbStep = np.zeros(1, dtype = np.int32) + nGrid
        poly = np.zeros(1, dtype = np.int32) + 2
        grid = StOptGrids.RegularLegendreGrid(lowValues, step, nbStep, poly)
              
        gasStorage(grid, maxLevelStorage)
        
    def test_simpleStorageLegendreCubic(self):
        
        # storage
        #########
        maxLevelStorage = 90000
        # grid
        ######
        nGrid = 5
        lowValues = np.zeros(1)
        step = np.zeros(1) + (maxLevelStorage / nGrid)
        nbStep = np.zeros(1, dtype = np.int32) + nGrid
        poly = np.zeros(1, dtype = np.int32) + 3
        grid = StOptGrids.RegularLegendreGrid(lowValues, step, nbStep, poly)
              
        gasStorage(grid, maxLevelStorage)
        
if __name__ == '__main__':
    unittest.main()