1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
#!/usr/bin/python3
# Copyright (C) 2016 EDF
# All Rights Reserved
# This code is published under the GNU Lesser General Public License (GNU LGPL)
import numpy as np
import math
import StOptReg as reg
import StOptGrids
import StOptGlobal
import Utils
import Simulators as sim
import Optimizers as opt
import dp.DynamicProgrammingByRegressionDist as dynmpi
import dp.SimulateRegressionControlDist as srtmpi
import unittest
import importlib
accuracyClose = 1e6
accuracyEqual = 0.0001
# valorization of a given gas storage on a grid
# p_grid the grid
# p_maxLevelStorage maximum level
def gasStorage(p_grid, p_maxLevelStorage) :
from mpi4py import MPI
world = MPI.COMM_WORLD
# storage
injectionRateStorage = 60000.
withdrawalRateStorage = 45000.
injectionCostStorage = 0.35
withdrawalCostStorage = 0.35
maturity = 1.
nstep = 10
# define a a time grid
timeGrid = StOptGrids.OneDimRegularSpaceGrid(0., maturity / nstep, nstep)
# future values
futValues = []
# periodicity factor
iPeriod = 52
for i in list(range(nstep + 1)) :
futValues.append(50. + 20. * math.sin((math.pi * i * iPeriod) / nstep))
# define the future curve
futureGrid = Utils.FutureCurve(timeGrid, futValues)
# one dimensional factors
nDim = 1
sigma = np.zeros(nDim) + 0.94
mr = np.zeros(nDim) + 0.29
# number of simulations
nbsimulOpt = 20000
# no actualization
rate =0.
# a backward simulator
bForward = False
backSimulator = sim.MeanRevertingSimulator(futureGrid, sigma, mr, rate, maturity, nstep, nbsimulOpt, bForward)
# optimizer
storage = opt.OptimizeGasStorageMeanReverting(injectionRateStorage, withdrawalRateStorage, injectionCostStorage, withdrawalCostStorage)
# regressor
nMesh = 6
nbMesh = np.zeros(1, dtype = np.int32) + nMesh
regressor = reg.LocalLinearRegression(nbMesh)
# final value
vFunction = Utils.ZeroPayOff()
# initial values
initialStock = np.zeros(1) + p_maxLevelStorage
initialRegime = 0 # only one regime
# Optimize
fileToDump = "CondExpGasStorageHLMpi"
bOneFile = True
# link the simulations to the optimizer
storage.setSimulator(backSimulator)
valueOptimMpi = dynmpi.DynamicProgrammingByRegressionDist(p_grid, storage, regressor, vFunction, initialStock, initialRegime, fileToDump, bOneFile)
print("valOptimMpi", valueOptimMpi)
world.barrier()
nbsimulSim = 40000
bForward = True
forSimulator = sim.MeanRevertingSimulator(futureGrid, sigma, mr, rate,maturity, nstep, nbsimulSim, bForward)
storage.setSimulator(forSimulator)
valSimuMpi = srtmpi.SimulateRegressionControlDist(p_grid, storage, vFunction, initialStock, initialRegime, fileToDump, bOneFile)
print("valSimuMpi", valSimuMpi)
return valueOptimMpi, valSimuMpi
class testGasStorageTest(unittest.TestCase):
def test_simpleStorageMpi(self):
moduleMpi4Py=importlib.util.find_spec('mpi4py')
if (moduleMpi4Py is not None):
from mpi4py import MPI
world = MPI.COMM_WORLD
# storage
maxLevelStorage = 90000
# grid
nGrid = 10
lowValues = np.zeros(1)
step = np.zeros(1) + (maxLevelStorage / nGrid)
nbStep = np.zeros(1, dtype = np.int32) + nGrid
grid = StOptGrids.RegularSpaceGrid(lowValues, step, nbStep)
val = gasStorage(grid, maxLevelStorage)
if world.rank == 0:
self.assertAlmostEqual(val[0], val[1], None, None, accuracyClose)
world.barrier()
# grid
######
poly = np.zeros(1, dtype = np.int32) + 1
gridL = StOptGrids.RegularLegendreGrid(lowValues, step, nbStep, poly)
valLegendre = gasStorage(gridL, maxLevelStorage)
if world.rank == 0:
self.assertAlmostEqual(valLegendre[0], valLegendre[1], None, None, accuracyClose)
def test_simpleStorageLegendreQuadratic(self):
moduleMpi4Py=importlib.util.find_spec('mpi4py')
if (moduleMpi4Py is not None):
from mpi4py import MPI
world = MPI.COMM_WORLD
# storage
maxLevelStorage = 90000
# grid
nGrid = 5
lowValues = np.zeros(1)
step = np.zeros(1) + (maxLevelStorage / nGrid)
nbStep = np.zeros(1, dtype = np.int32) + nGrid
poly = np.zeros(1, dtype = np.int32) + 2
grid = StOptGrids.RegularLegendreGrid(lowValues, step, nbStep, poly)
val = gasStorage(grid, maxLevelStorage)
if world.rank == 0:
self.assertAlmostEqual(val[0], val[1], None, None, accuracyClose)
def test_simpleStorageLegendreCubic(self):
moduleMpi4Py=importlib.util.find_spec('mpi4py')
if (moduleMpi4Py is not None):
from mpi4py import MPI
world = MPI.COMM_WORLD
# storage
maxLevelStorage = 90000
# grid
nGrid = 5
lowValues = np.zeros(1)
step = np.zeros(1) + (maxLevelStorage / nGrid)
nbStep = np.zeros(1, dtype = np.int32) + nGrid
poly = np.zeros(1, dtype = np.int32) + 3
grid = StOptGrids.RegularLegendreGrid(lowValues, step, nbStep, poly)
val = gasStorage(grid, maxLevelStorage)
if world.rank == 0:
self.assertAlmostEqual(val[0], val[1], None, None, accuracyClose)
if __name__ == '__main__':
unittest.main()
|