1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
#!/usr/bin/python3
# Copyright (C) 2016 EDF
# All Rights Reserved
# This code is published under the GNU Lesser General Public License (GNU LGPL)
import numpy as np
import math
import StOptReg as reg
import StOptGrids
import StOptGlobal
import Simulators as sim
import Optimizers as opt
import Utils
import dp.DynamicProgrammingByRegressionDist as dynmpi
import dp.SimulateRegressionControlDist as srtmpi
import unittest
import importlib
accuracyClose = 1e5
class testGasStorageSwitchCostMpiHighLevelTest(unittest.TestCase):
def testGasStorageSwitchCostMpiHighLevel(self):
moduleMpi4Py=importlib.util.find_spec('mpi4py')
if (moduleMpi4Py is not None):
from mpi4py import MPI
world = MPI.COMM_WORLD
# storage
###############
maxLevelStorage = 360000.
injectionRateStorage = 60000.
withdrawalRateStorage = 45000.
injectionCostStorage = 0.35
withdrawalCostStorage = 0.35
switchingCostStorage = 4.
maturity = 1.
nstep = 10
# define a a time grid
timeGrid = StOptGrids.OneDimRegularSpaceGrid(0., maturity / nstep, nstep)
futValues = []
# periodicity factor
iPeriod = 52
for i in range(nstep + 1):
futValues.append(50. + 20 * math.sin((math.pi * i * iPeriod) / nstep))
# define the future curve
futureGrid = Utils.FutureCurve(timeGrid, futValues)
# one dimensional factors
nDim = 1
sigma = np.zeros(nDim) + 0.94
mr = np.zeros(nDim) + 0.29
# number of simulations
nbsimulOpt = 20000
# grid
#####
nGrid = 40
lowValues = np.zeros(1, dtype = float)
step = np.zeros(1, dtype = float) + maxLevelStorage / nGrid
nbStep = np.zeros(1, dtype = np.int32) + nGrid
grid = StOptGrids.RegularSpaceGrid(lowValues, step, nbStep)
# no actualization
rate=0.
# a backward simulator
######################
bForward = False
backSimulator = sim.MeanRevertingSimulator(futureGrid, sigma, mr, rate, maturity, nstep, nbsimulOpt, bForward)
# optimizer
############
storage = opt.OptimizeGasStorageSwitchingCostMeanReverting(injectionRateStorage, withdrawalRateStorage, injectionCostStorage, withdrawalCostStorage, switchingCostStorage)
# regressor
##########
nMesh = 4
nbMesh = np.zeros(1, dtype = np.int32) + nMesh
regressor = reg.LocalLinearRegression(nbMesh)
# final value
vFunction = Utils.ZeroPayOff()
# initial values
initialStock = np.zeros(1) + maxLevelStorage
initialRegime = 0 # here do nothing (no injection, no withdrawal)
# Optimize
###########
fileToDump = "CondExpGasSwiCostHLMpi"
bOneFile = True
# link the simulations to the optimizer
storage.setSimulator(backSimulator)
valueOptimMpi = dynmpi.DynamicProgrammingByRegressionDist(grid, storage, regressor, vFunction, initialStock, initialRegime, fileToDump, bOneFile)
print("valOP", valueOptimMpi)
world.barrier()
nbsimulSim = 40000
bForward = True
forSimulator = sim.MeanRevertingSimulator(futureGrid, sigma, mr, rate,maturity, nstep, nbsimulSim, bForward)
storage.setSimulator(forSimulator)
valSimuMpi = srtmpi.SimulateRegressionControlDist(grid, storage, vFunction, initialStock, initialRegime, fileToDump, bOneFile)
print("valSimuMpi", valSimuMpi)
if world.rank == 0:
self.assertAlmostEqual(valueOptimMpi, valSimuMpi, None, "Re-adjust tolerance edge please", accuracyClose)
print("Optim", valueOptimMpi, "valSimuMpi", valSimuMpi)
return valueOptimMpi
def test_switchingVaryingRegimeStorageMpi(self):
moduleMpi4Py=importlib.util.find_spec('mpi4py')
if (moduleMpi4Py is not None):
from mpi4py import MPI
world = MPI.COMM_WORLD
# storage
###############
maxLevelStorage = 360000.
injectionRateStorage = 60000.
withdrawalRateStorage = 45000.
injectionCostStorage = 0.35
withdrawalCostStorage = 0.35
switchingCostStorage = 4.
maturity = 1.
nstep = 10
# define a a time grid
timeGrid = StOptGrids.OneDimRegularSpaceGrid(0., maturity / nstep, nstep)
futValues = []
# periodicity factor
iPeriod = 52
for i in range(nstep + 1):
futValues.append(50. + 20 * math.sin((math.pi * i * iPeriod) / nstep))
# define the future curve
futureGrid = Utils.FutureCurve(timeGrid, futValues)
# regime values allowed
#######################
tvalues = np.zeros(6)
tvalues[0] = 0.
tvalues[1] = 1e-3
tvalues[2] = 1. / 4 + 1e-3
tvalues[3] = 1. / 2 + 1e-3
tvalues[4] = 3. / 4. + 1e-3
tvalues[5] = 1.
timeRegimes = StOptGrids.OneDimSpaceGrid(tvalues)
regValues = []
regValues.append(3)
regValues.append(3)
regValues.append(1)
regValues.append(3)
regValues.append(2)
regValues.append(3)
regime = Utils.RegimeCurve(timeRegimes, regValues)
# one dimensional factors
nDim = 1
sigma = np.zeros(nDim) + 0.94
mr = np.zeros(nDim) + 0.29
# number of simulations
nbsimulOpt = 20000
# grid
#####
nGrid = 40
lowValues = np.zeros(1, dtype = float)
step = np.zeros(1, dtype = float) + maxLevelStorage / nGrid
nbStep = np.zeros(1, dtype = np.int32) + nGrid
grid = StOptGrids.RegularSpaceGrid(lowValues, step, nbStep)
# no actualization
rate = 0.
# a backward simulator
######################
bForward = False
backSimulator = sim.MeanRevertingSimulator(futureGrid, sigma, mr, rate, maturity, nstep, nbsimulOpt, bForward)
# optimizer
############
storage = opt.OptimizeGasStorageSwitchingCostMeanReverting(injectionRateStorage, withdrawalRateStorage, injectionCostStorage, withdrawalCostStorage, switchingCostStorage, regime)
# regressor
##########
nMesh = 4
nbMesh = np.zeros(1, dtype = np.int32) + nMesh
regressor = reg.LocalLinearRegression(nbMesh)
# final value
vFunction = Utils.ZeroPayOff()
# initial values
initialStock = np.zeros(1) + maxLevelStorage
initialRegime = 0 # here do nothing (no injection, no withdrawal)
# Optimize
###########
fileToDump = "CondExpGas"
bOneFile = True
# link the simulations to the optimizer
storage.setSimulator(backSimulator)
valueOptimMpi = dynmpi.DynamicProgrammingByRegressionDist(grid, storage, regressor, vFunction, initialStock, initialRegime, fileToDump, bOneFile)
print("valOP", valueOptimMpi)
world.barrier()
# a forward simulator
#####################
nbsimulSim = 40000
bForward = True
forSimulator = sim.MeanRevertingSimulator(futureGrid, sigma, mr, rate, maturity, nstep, nbsimulSim, bForward)
# link the simulations to the optimizer
storage.setSimulator(forSimulator)
valSimuMpi = srtmpi.SimulateRegressionControlDist(grid, storage, vFunction, initialStock, initialRegime, fileToDump, bOneFile)
print("valSimuMpi", valSimuMpi)
if world.rank == 0:
self.assertAlmostEqual(valueOptimMpi, valSimuMpi, None, "Re-adjust tolerance edge please", accuracyClose)
print("valOP", valueOptimMpi, "valSimuMpi", valSimuMpi)
if __name__ == '__main__':
unittest.main()
|