File: testGasStorageSwitchCostHighLevelMpi.py

package info (click to toggle)
stopt 5.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,772 kB
  • sloc: cpp: 70,373; python: 5,942; makefile: 67; sh: 57
file content (222 lines) | stat: -rw-r--r-- 8,614 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/python3

# Copyright (C) 2016 EDF
# All Rights Reserved
# This code is published under the GNU Lesser General Public License (GNU LGPL)
import numpy as np
import math
import StOptReg as reg
import StOptGrids
import StOptGlobal
import Simulators as sim
import Optimizers as opt
import Utils
import dp.DynamicProgrammingByRegressionDist as dynmpi
import dp.SimulateRegressionControlDist as srtmpi
import unittest
import importlib

accuracyClose = 1e5

    
class testGasStorageSwitchCostMpiHighLevelTest(unittest.TestCase):
    
    def testGasStorageSwitchCostMpiHighLevel(self):
        
        moduleMpi4Py=importlib.util.find_spec('mpi4py')
        if (moduleMpi4Py is not None):
            from mpi4py import MPI

            world = MPI.COMM_WORLD
            # storage
            ###############
            maxLevelStorage = 360000.
            injectionRateStorage = 60000.
            withdrawalRateStorage = 45000.
            injectionCostStorage = 0.35
            withdrawalCostStorage = 0.35
            switchingCostStorage =  4.

            maturity = 1.
            nstep = 10

            # define a a time grid
            timeGrid = StOptGrids.OneDimRegularSpaceGrid(0., maturity / nstep, nstep)
            futValues = []
            # periodicity factor
            iPeriod = 52

            for i in range(nstep + 1):
                futValues.append(50. + 20 * math.sin((math.pi * i * iPeriod) / nstep))

            # define the future curve
            futureGrid = Utils.FutureCurve(timeGrid, futValues)
            # one dimensional factors
            nDim = 1
            sigma = np.zeros(nDim) + 0.94
            mr = np.zeros(nDim) + 0.29
            # number of simulations
            nbsimulOpt = 20000
            # grid
            #####
            nGrid = 40
            lowValues = np.zeros(1, dtype = float)
            step = np.zeros(1, dtype = float) + maxLevelStorage / nGrid
            nbStep = np.zeros(1, dtype = np.int32) + nGrid
            grid = StOptGrids.RegularSpaceGrid(lowValues, step, nbStep)

            # no actualization
            rate=0. 
            # a backward simulator
            ######################
            bForward = False
            backSimulator = sim.MeanRevertingSimulator(futureGrid, sigma, mr, rate, maturity, nstep, nbsimulOpt, bForward)
            # optimizer
            ############
            storage = opt.OptimizeGasStorageSwitchingCostMeanReverting(injectionRateStorage, withdrawalRateStorage, injectionCostStorage, withdrawalCostStorage, switchingCostStorage)
            # regressor
            ##########
            nMesh = 4
            nbMesh = np.zeros(1, dtype = np.int32) + nMesh
            regressor = reg.LocalLinearRegression(nbMesh)
            # final value
            vFunction = Utils.ZeroPayOff()

            # initial values
            initialStock = np.zeros(1) + maxLevelStorage
            initialRegime = 0 # here do nothing (no injection, no withdrawal)

            # Optimize
            ###########
            fileToDump = "CondExpGasSwiCostHLMpi"
            bOneFile = True
            # link the simulations to the optimizer
            storage.setSimulator(backSimulator)
            valueOptimMpi = dynmpi.DynamicProgrammingByRegressionDist(grid, storage, regressor, vFunction, initialStock, initialRegime, fileToDump, bOneFile)
            print("valOP", valueOptimMpi)

            world.barrier()

            nbsimulSim = 40000
            bForward = True
            forSimulator = sim.MeanRevertingSimulator(futureGrid, sigma, mr, rate,maturity, nstep, nbsimulSim, bForward)
            storage.setSimulator(forSimulator)
            valSimuMpi = srtmpi.SimulateRegressionControlDist(grid, storage, vFunction, initialStock, initialRegime, fileToDump, bOneFile)
            print("valSimuMpi", valSimuMpi)

            if world.rank == 0:
                self.assertAlmostEqual(valueOptimMpi, valSimuMpi, None, "Re-adjust tolerance edge please", accuracyClose)
                print("Optim", valueOptimMpi, "valSimuMpi", valSimuMpi)

            return valueOptimMpi

    def test_switchingVaryingRegimeStorageMpi(self):
        
        moduleMpi4Py=importlib.util.find_spec('mpi4py')
        if (moduleMpi4Py is not None):
            from mpi4py import MPI
            world = MPI.COMM_WORLD
            # storage
            ###############
            maxLevelStorage = 360000.
            injectionRateStorage = 60000.
            withdrawalRateStorage = 45000.
            injectionCostStorage = 0.35
            withdrawalCostStorage = 0.35
            switchingCostStorage =  4.
            
            maturity = 1.
            nstep = 10
        
            # define a a time grid
            timeGrid = StOptGrids.OneDimRegularSpaceGrid(0., maturity / nstep, nstep)
            futValues = []
            # periodicity factor
            iPeriod = 52
            
            for i in range(nstep + 1):
                futValues.append(50. + 20 * math.sin((math.pi * i * iPeriod) / nstep))
                
            # define the future curve
            futureGrid = Utils.FutureCurve(timeGrid, futValues)
            # regime values allowed
            #######################
            tvalues = np.zeros(6)
            tvalues[0] = 0.
            tvalues[1] = 1e-3
            tvalues[2] = 1. / 4 + 1e-3
            tvalues[3] = 1. / 2 + 1e-3
            tvalues[4] = 3. / 4. + 1e-3
            tvalues[5] = 1.
            timeRegimes = StOptGrids.OneDimSpaceGrid(tvalues)
            regValues = []
            regValues.append(3)
            regValues.append(3)
            regValues.append(1)
            regValues.append(3)
            regValues.append(2)
            regValues.append(3)
            regime = Utils.RegimeCurve(timeRegimes, regValues)
            # one dimensional factors
            nDim = 1
            sigma = np.zeros(nDim) + 0.94
            mr = np.zeros(nDim) + 0.29
            # number of simulations
            nbsimulOpt = 20000
            # grid
            #####
            nGrid = 40
            lowValues = np.zeros(1, dtype = float)
            step = np.zeros(1, dtype = float) + maxLevelStorage / nGrid
            nbStep = np.zeros(1, dtype = np.int32) + nGrid
            grid = StOptGrids.RegularSpaceGrid(lowValues, step, nbStep)
            
            # no actualization
            rate = 0.
            # a backward simulator
            ######################
            bForward = False
            backSimulator = sim.MeanRevertingSimulator(futureGrid, sigma, mr, rate, maturity, nstep, nbsimulOpt, bForward)
            # optimizer
            ############
            storage = opt.OptimizeGasStorageSwitchingCostMeanReverting(injectionRateStorage, withdrawalRateStorage, injectionCostStorage, withdrawalCostStorage, switchingCostStorage, regime)
            # regressor
            ##########
            nMesh = 4
            nbMesh = np.zeros(1, dtype = np.int32) + nMesh
            regressor = reg.LocalLinearRegression(nbMesh)
            # final value
            vFunction = Utils.ZeroPayOff()
            
            # initial values
            initialStock = np.zeros(1) + maxLevelStorage
            initialRegime = 0 # here do nothing (no injection, no withdrawal)
            
            # Optimize
            ###########
            fileToDump = "CondExpGas"
            bOneFile = True
            # link the simulations to the optimizer
            storage.setSimulator(backSimulator)
            valueOptimMpi = dynmpi.DynamicProgrammingByRegressionDist(grid, storage, regressor, vFunction, initialStock, initialRegime, fileToDump, bOneFile)
            print("valOP", valueOptimMpi)
            
            world.barrier()
            
            # a forward simulator
            #####################
            nbsimulSim = 40000
            bForward = True
            forSimulator = sim.MeanRevertingSimulator(futureGrid, sigma, mr, rate, maturity, nstep, nbsimulSim, bForward)
            # link the simulations to the optimizer
            storage.setSimulator(forSimulator)
            valSimuMpi = srtmpi.SimulateRegressionControlDist(grid, storage, vFunction, initialStock, initialRegime, fileToDump, bOneFile)
            print("valSimuMpi", valSimuMpi)
            
            if world.rank == 0:
                self.assertAlmostEqual(valueOptimMpi, valSimuMpi, None, "Re-adjust tolerance edge please", accuracyClose)
                print("valOP", valueOptimMpi, "valSimuMpi", valSimuMpi)

if __name__ == '__main__':
    
    unittest.main()