1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
#!/usr/bin/python3
# Copyright (C) 2016 EDF
# All Rights Reserved
# This code is published under the GNU Lesser General Public License (GNU LGPL)
import math
import numpy as np
import unittest
import simulators.BlackScholesSimulator as bs
import utils.BasketOptions as bo
import StOptGrids
import StOptReg as reg
import StOptGlobal
import Simulators as sim
import Optimizers as opt
import Utils
from utils.EuropeanOptions import CallOption
from utils.EuropeanOptions import PutOption as put
import importlib
import dp.DynamicProgrammingByRegressionDist as dynmpi
accuracyClose = 0.2
accuracyNearlyEqual = 0.05
# Analytical value
# p_S asset value
# p_sigma volatility
# p_r interest rate
# p_strike strike
# p_dates possible exercise dates
# return option value
def analyticalValue(N, p_S, p_sigma, p_r, p_strike, p_dates) :
analytical = 0.
callOption = CallOption()
for i in range(len(p_dates) - N, len(p_dates)) :
analytical += callOption.operator(p_S, p_sigma, p_r, p_strike, p_dates[i])
return analytical
# Classical resolution for swing
# p_sim Monte Carlo simulator
# p_payOff Option pay off
# p_regressor regressor object
# p_dates possible exercise dates
# p_N number of exercises
def resolutionSwing(p_sim, p_payOff, p_regressor, p_dates, p_N) :
if ((p_sim.getNbStep() + 1) == len(p_dates)) == False :
pass
# asset simulated under the neutral risk probability : get the trend of first asset to get interest rate
# in this example the step between two exercises is given
expRate = p_sim.getActuStep()
# final payOff
finalPayOff = p_payOff.applyVec(p_sim.getParticles())
# Terminal function depending on simulations and stock already exercised
cashNext = np.zeros((len(finalPayOff), p_N))
for i in range(len(finalPayOff)) :
cashNext[i,:] = (finalPayOff[i]).transpose()
cashPrev = np.zeros((len(finalPayOff), p_N))
for iStep in range(len(p_dates) - 1)[::-1] :
asset = p_sim.stepBackwardAndGetParticles()
payOffLoc = p_payOff.applyVec(asset)
payOffLoc = payOffLoc.squeeze()
# conditional expectation
if iStep == 0 :
p_regressor.updateSimulations(True, asset)
else :
p_regressor.updateSimulations(False, asset)
# store conditional expectations
vecCondEspec = list(range(p_N))
for iStock in range(p_N):
vecCondEspec[iStock] = p_regressor.getAllSimulations(cashNext[:,iStock]).squeeze() * expRate
# arbitrage
for iStock in range(p_N - 1):
cashPrev[:,iStock] = np.where(payOffLoc + vecCondEspec[iStock + 1] > vecCondEspec[iStock], payOffLoc + expRate * cashNext[:,iStock + 1], expRate * cashNext[:,iStock])
# last stock
cashPrev[:,p_N - 1] = np.where(payOffLoc > vecCondEspec[p_N - 1], payOffLoc, expRate * cashNext[:,p_N - 1])
# switch
tempVec = cashNext
cashNext = cashPrev
cashPrev = tempVec
return np.mean(cashNext[:,0])
def resolutionSwingContinuation(p_sim, p_payOff, p_regressor, p_dates, p_N):
if (p_sim.getNbStep() + 1 == len(p_dates)) == False:
pass
# asset simulated under the neutral risk probability : get the trend of first asset to get interest rate
# in this example the step between two exercises is given
expRate = math.exp(-p_sim.getStep() * p_sim.getMu()[0])
lowValues = np.zeros(1)
step = np.zeros(1)
lowValues[0] = 0.
step[0] = 1
nbStep = np.zeros(1, dtype = np.int32)
nbStep[0] = p_N - 1
regular = StOptGrids.RegularSpaceGrid(lowValues, step, nbStep)
extremeGrid = np.zeros(2)
extremeGrid[0] = lowValues
extremeGrid[1] = lowValues + step * nbStep
# final payOff
finalPayOff = p_payOff.applyVec(p_sim.getParticles())
# Terminal function depending on simulations and stock already exercised
cashNext = np.zeros((len(finalPayOff), regular.getNbPoints()))
for i in range(len(finalPayOff)):
cashNext[i,:] = (np.zeros(regular.getNbPoints()) + finalPayOff[i]).transpose()
cashPrev = np.zeros((len(finalPayOff), regular.getNbPoints()))
for iStep in range(len(p_dates) - 2)[::-1] :
asset = p_sim.stepBackwardAndGetParticles()
payOffLoc = p_payOff.applyVec(asset)
# conditional expectation
if iStep == 0 :
p_regressor.updateSimulations(True, asset)
else :
p_regressor.updateSimulations(False, asset)
# continuation value object dealing with stocks
continuation = reg.ContinuationValue(regular, p_regressor, cashNext)
# iterator on grid points
iterOnGrid = regular.getGridIterator()
while iterOnGrid.isValid():
CoordStock = iterOnGrid.getCoordinate()
# use continuation to get realization of condition expectation
conditionExpecCur = np.multiply(expRate, continuation.getAllSimulations(CoordStock).squeeze())
if CoordStock[0] + 1 <= extremeGrid[1] :
conditionExpecNext = np.multiply(expRate, continuation.getAllSimulations(CoordStock + 1).squeeze())
cashPrev[:,iterOnGrid.getCount()] = np.where(payOffLoc + conditionExpecNext > conditionExpecCur, payOffLoc + np.multiply(expRate, cashNext[:,iterOnGrid.getCount() + 1]), np.multiply(expRate, cashNext[:,iterOnGrid.getCount()]))
else :
cashPrev[:,iterOnGrid.getCount()] = np.where(payOffLoc > conditionExpecCur, payOffLoc, np.multiply(expRate, cashNext[:,iterOnGrid.getCount()]))
iterOnGrid.next()
# switch pointer
tempVec = cashNext
cashNext = cashPrev
cashPrev = tempVec
return np.mean(cashNext[:,0])
# function to test stock in dimension above 1
def multiStock(p_ndim):
moduleMpi4Py=importlib.util.find_spec('mpi4py')
if (moduleMpi4Py is not None):
from mpi4py import MPI
world = MPI.COMM_WORLD
initialValues = np.zeros(1) + 1.
sigma = np.zeros(1) + 0.2
mu = np.zeros(1) + 0.05
corr = np.ones((1,1))
# number of step
nStep = 20
# exercice date
dates = np.linspace(0., 1., nStep + 1)
# exercice dates
N = 3
T = 1.
strike = 1.
nbSimul = 10000
nMesh = 4
# payoff
payoff = Utils.BasketCall(strike)
# store sequential
valueSeq = 0
# mesh
nbMesh = np.zeros(1, dtype = np.int32) + nMesh
if world.rank == 0:
# simulator
simulator = bs.BlackScholesSimulator(initialValues, sigma, mu, corr, dates[len(dates) - 1], len(dates) - 1, nbSimul, False)
# regressor
regressor = reg.LocalLinearRegression(nbMesh)
# bermudean value
valueSeq = resolutionSwing(simulator, payoff, regressor, dates, N)
# simulator
simulator = sim.BlackScholesSimulator(initialValues, sigma, mu, corr, dates[len(dates) - 1], len(dates) - 1, nbSimul, False)
# grid
lowValues = np.zeros(p_ndim)
step = np.zeros(p_ndim) + 1.
# the stock is discretized with values from 0 to N included
nbStep = np.zeros(p_ndim, dtype = np.int32) + N
grid = StOptGrids.RegularSpaceGrid(lowValues, step, nbStep)
# final value
vFunction = Utils.PayOffFictitiousSwing(payoff, N)
# optimizer
optimizer = opt.OptimizerFictitiousSwingBlackScholes(payoff, N, p_ndim)
# initial values
initialStock = np.zeros(p_ndim)
initialRegime = 0
fileToDump = "CondExpSwing"
# regressor
regressor = reg.LocalLinearRegression(nbMesh)
bOneFile = False
# link the simulations to the optimizer
optimizer.setSimulator(simulator)
valueParal = dynmpi.DynamicProgrammingByRegressionDist(grid, optimizer, regressor, vFunction, initialStock, initialRegime, fileToDump, bOneFile)
return valueParal, valueSeq
class testSwingOptionTest(unittest.TestCase) :
def test_swingOptionInOptimization(self):
initialValues = np.zeros(1) + 1.
sigma = np.zeros(1) + 0.2
mu = np.zeros(1) + 0.05
corr = np.ones((1,1))
# number of step
nStep = 30
# exercise date
dates = np.linspace(0., 1., nStep + 1)
N = 3 # 3 exercise dates
T = 1.
strike = 1.
nbSimul = 200000
nMesh = 16
# payoff
payoff = bo.BasketCall(strike)
# analytical
analytical = analyticalValue(N, initialValues[0], sigma[0], mu[0], strike, dates)
# mesh
nbMesh = np.zeros(1, dtype = np.int32) + nMesh
# simulator
simulator = bs.BlackScholesSimulator(initialValues, sigma, mu, corr, dates[len(dates) - 1], len(dates) - 1, nbSimul, False)
# regressor
regressor = reg.LocalLinearRegression(nbMesh)
# bermudean value
valueSeq = resolutionSwing(simulator, payoff, regressor, dates, N)
# simulator
simulator = bs.BlackScholesSimulator(initialValues, sigma, mu, corr, dates[len(dates) - 1], len(dates) - 1, nbSimul, False)
# regressor
regressor = reg.LocalLinearRegression(nbMesh)
# using continuation values
valueSeqContinuation = resolutionSwingContinuation(simulator, payoff, regressor, dates, N)
print("valueSeq", valueSeq, "valueSeqContinuation", valueSeqContinuation)
self.assertAlmostEqual(valueSeq, analytical, None, None, accuracyClose)
def test_swingOption2D(self):
moduleMpi4Py=importlib.util.find_spec('mpi4py')
if (moduleMpi4Py is not None):
from mpi4py import MPI
world = MPI.COMM_WORLD
val = multiStock(2)
if world.rank == 0:
self.assertAlmostEqual(val[1] * 2, val[0], None, None, accuracyNearlyEqual)
def test_swingOption3D(self):
moduleMpi4Py=importlib.util.find_spec('mpi4py')
if (moduleMpi4Py is not None):
from mpi4py import MPI
world = MPI.COMM_WORLD
val = multiStock(3)
if world.rank == 0:
self.assertAlmostEqual(val[1] * 3, val[0], None, None, accuracyNearlyEqual)
if __name__ == '__main__':
unittest.main()
|